UniSTPA: A Safety Analysis Framework for End-to-End Autonomous Driving
- URL: http://arxiv.org/abs/2505.15005v1
- Date: Wed, 21 May 2025 01:23:31 GMT
- Title: UniSTPA: A Safety Analysis Framework for End-to-End Autonomous Driving
- Authors: Hongrui Kou, Zhouhang Lyu, Ziyu Wang, Cheng Wang, Yuxin Zhang,
- Abstract summary: We propose the Unified System Theoretic Process Analysis (UniSTPA) framework.<n>UniSTPA performs hazard analysis not only at the component level but also within the model's internal layers.<n>The proposed framework thus offers both theoretical and practical guidance for the safe development and deployment of end-to-end autonomous driving systems.
- Score: 10.063740202765343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As autonomous driving technology continues to advance, end-to-end models have attracted considerable attention owing to their superior generalisation capability. Nevertheless, such learning-based systems entail numerous safety risks throughout development and on-road deployment, and existing safety-analysis methods struggle to identify these risks comprehensively. To address this gap, we propose the Unified System Theoretic Process Analysis (UniSTPA) framework, which extends the scope of STPA from the operational phase to the entire lifecycle of an end-to-end autonomous driving system, including information gathering, data preparation, closed loop training, verification, and deployment. UniSTPA performs hazard analysis not only at the component level but also within the model's internal layers, thereby enabling fine-grained assessment of inter and intra module interactions. Using a highway Navigate on Autopilot function as a case study, UniSTPA uncovers multi-stage hazards overlooked by conventional approaches including scene design defects, sensor fusion biases, and internal model flaws, through multi-level causal analysis, traces these hazards to deeper issues such as data quality, network architecture, and optimisation objectives. The analysis result are used to construct a safety monitoring and safety response mechanism that supports continuous improvement from hazard identification to system optimisation. The proposed framework thus offers both theoretical and practical guidance for the safe development and deployment of end-to-end autonomous driving systems.
Related papers
- Towards provable probabilistic safety for scalable embodied AI systems [79.31011047593492]
Embodied AI systems are increasingly prevalent across various applications.<n> Ensuring their safety in complex operating environments remains a major challenge.<n>This Perspective offers a pathway toward safer, large-scale adoption of embodied AI systems in safety-critical applications.
arXiv Detail & Related papers (2025-06-05T15:46:25Z) - Systematic Hazard Analysis for Frontier AI using STPA [0.0]
frontier AI companies currently do not describe in detail any structured approach to identifying and analysing hazards.<n>A (Systems-Theoretic Process Analysis) is a systematic methodology for identifying how complex systems can become unsafe, leading to hazards.<n>We evaluateA's ability to broaden the scope, improve traceability and strengthen the robustness of safety assurance for frontier AI systems.
arXiv Detail & Related papers (2025-06-02T15:28:34Z) - SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models [63.71984266104757]
Multimodal Large Language Models (MLLMs) can process both visual and textual data.<n>We propose SafeAuto, a novel framework that enhances MLLM-based autonomous driving systems by incorporating both unstructured and structured knowledge.
arXiv Detail & Related papers (2025-02-28T21:53:47Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - Enhancing Functional Safety in Automotive AMS Circuits through Unsupervised Machine Learning [9.100418852199082]
We propose a novel framework based on unsupervised machine learning for early anomaly detection in AMS circuits.
The proposed approach involves injecting anomalies at various circuit locations and individual components to create a diverse and comprehensive anomaly dataset.
By monitoring the system behavior under these anomalous conditions, we capture the propagation of anomalies and their effects at different abstraction levels.
arXiv Detail & Related papers (2024-04-02T04:33:03Z) - On STPA for Distributed Development of Safe Autonomous Driving: An Interview Study [0.7851536646859475]
System-Theoretic Process Analysis (STPA) is a novel method applied in safety-related fields like defense and aerospace.
STPA assumes prerequisites that are not fully valid in the automotive system engineering with distributed system development and multi-abstraction design levels.
This can be seen as a maintainability challenge in continuous development and deployment.
arXiv Detail & Related papers (2024-03-14T15:56:02Z) - STEAM & MoSAFE: SOTIF Error-and-Failure Model & Analysis for AI-Enabled
Driving Automation [4.820785104084241]
This paper defines the SOTIF Temporal Error and Failure Model (STEAM) as a refinement of the SOTIF cause-and-effect model.
Second, this paper proposes the Model-based SOTIF Analysis of Failures and Errors (MoSAFE) method, which allows instantiating STEAM based on system-design models.
arXiv Detail & Related papers (2023-12-15T06:34:35Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Safety-aware Causal Representation for Trustworthy Offline Reinforcement
Learning in Autonomous Driving [33.672722472758636]
offline Reinforcement Learning(RL) approaches exhibit notable efficacy in addressing sequential decision-making problems from offline datasets.
We introduce the saFety-aware strUctured Scenario representatION ( Fusion) to facilitate the learning of a generalizable end-to-end driving policy.
Empirical evidence in various driving scenarios attests that Fusion significantly enhances the safety and generalizability of autonomous driving agents.
arXiv Detail & Related papers (2023-10-31T18:21:24Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
Safety assurance cases (SACs) can be challenging to maintain during system evolution.
We propose a solution that leverages software traceability to connect relevant system artifacts to safety analysis models.
We elicit design rationales for system changes to help safety stakeholders analyze the impact of system changes on safety.
arXiv Detail & Related papers (2023-07-14T16:03:27Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for
Autonomous Driving [16.78084912175149]
This paper proposes the "Self-Surveillance and Self-Adaption System" as a systematic approach to online minimize the SOTIF risk.
The core of this system is the risk monitoring of the implemented artificial intelligence algorithms within the autonomous vehicles.
The inherent perception algorithm risk and external collision risk are jointly quantified via SOTIF entropy.
arXiv Detail & Related papers (2022-11-08T05:02:12Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.