One-Layer Transformers are Provably Optimal for In-context Reasoning and Distributional Association Learning in Next-Token Prediction Tasks
- URL: http://arxiv.org/abs/2505.15009v1
- Date: Wed, 21 May 2025 01:26:44 GMT
- Title: One-Layer Transformers are Provably Optimal for In-context Reasoning and Distributional Association Learning in Next-Token Prediction Tasks
- Authors: Quan Nguyen, Thanh Nguyen-Tang,
- Abstract summary: We study the approximation capabilities and on-convergence behaviors of one-layer transformers on the noiseless and noisy in-context reasoning of next-token prediction.<n>Our work addresses gaps by showing that there exists a class of one-layer transformers that are provably Bayes-optimal with both linear and ReLU attention.
- Score: 11.06955946904705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the approximation capabilities and on-convergence behaviors of one-layer transformers on the noiseless and noisy in-context reasoning of next-token prediction. Existing theoretical results focus on understanding the in-context reasoning behaviors for either the first gradient step or when the number of samples is infinite. Furthermore, no convergence rates nor generalization abilities were known. Our work addresses these gaps by showing that there exists a class of one-layer transformers that are provably Bayes-optimal with both linear and ReLU attention. When being trained with gradient descent, we show via a finite-sample analysis that the expected loss of these transformers converges at linear rate to the Bayes risk. Moreover, we prove that the trained models generalize to unseen samples as well as exhibit learning behaviors that were empirically observed in previous works. Our theoretical findings are further supported by extensive empirical validations.
Related papers
- Learning and Transferring Sparse Contextual Bigrams with Linear Transformers [47.37256334633102]
We introduce the Sparse Con Bigram model, where the next token's generation depends on a sparse set of earlier positions determined by the last token.
We analyze the training dynamics and sample complexity of learning SCB using a one-layer linear transformer with a gradient-based algorithm.
We prove that, provided a nontrivial correlation between the downstream and pretraining tasks, finetuning from a pretrained model allows us to bypass the initial sample-intensive stage.
arXiv Detail & Related papers (2024-10-30T20:29:10Z) - Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? [69.4145579827826]
We show a fast flow on the regression loss despite the gradient non-ity algorithms for our convergence landscape.
This is the first theoretical analysis for multi-layer Transformer in this setting.
arXiv Detail & Related papers (2024-10-10T18:29:05Z) - Training Nonlinear Transformers for Chain-of-Thought Inference: A Theoretical Generalization Analysis [82.51626700527837]
Chain-of-shift (CoT) is an efficient method that enables the reasoning ability of large language models by augmenting the query using examples with multiple intermediate steps.
We show that despite the theoretical success of CoT, it fails to provide an accurate generalization when CoT does.
arXiv Detail & Related papers (2024-10-03T03:12:51Z) - Non-asymptotic Convergence of Training Transformers for Next-token Prediction [48.9399496805422]
Transformers have achieved extraordinary success in modern machine learning due to their excellent ability to handle sequential data.
This paper provides a fine-grained non-asymptotic analysis of the training dynamics of a one-layer transformer.
We show that the trained transformer presents non-token prediction ability with dataset shift.
arXiv Detail & Related papers (2024-09-25T20:22:06Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - On the Generalization Ability of Unsupervised Pretraining [53.06175754026037]
Recent advances in unsupervised learning have shown that unsupervised pre-training, followed by fine-tuning, can improve model generalization.
This paper introduces a novel theoretical framework that illuminates the critical factor influencing the transferability of knowledge acquired during unsupervised pre-training to the subsequent fine-tuning phase.
Our results contribute to a better understanding of unsupervised pre-training and fine-tuning paradigm, and can shed light on the design of more effective pre-training algorithms.
arXiv Detail & Related papers (2024-03-11T16:23:42Z) - In-Context Convergence of Transformers [63.04956160537308]
We study the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent.
For data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process.
arXiv Detail & Related papers (2023-10-08T17:55:33Z) - What Happens During Finetuning of Vision Transformers: An Invariance
Based Investigation [7.432224771219168]
The pretrain-finetune paradigm usually improves downstream performance over training a model from scratch on the same task.
In this work, we examine the relationship between pretrained vision transformers and the corresponding finetuned versions on several benchmark datasets and tasks.
arXiv Detail & Related papers (2023-07-12T08:35:24Z) - Trained Transformers Learn Linear Models In-Context [39.56636898650966]
Attention-based neural networks as transformers have demonstrated a remarkable ability to exhibit inattention learning (ICL)
We show that when transformer training over random instances of linear regression problems, these models' predictions mimic nonlinear of ordinary squares.
arXiv Detail & Related papers (2023-06-16T15:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.