Diffusion vs. Autoregressive Language Models: A Text Embedding Perspective
- URL: http://arxiv.org/abs/2505.15045v1
- Date: Wed, 21 May 2025 02:59:14 GMT
- Title: Diffusion vs. Autoregressive Language Models: A Text Embedding Perspective
- Authors: Siyue Zhang, Yilun Zhao, Liyuan Geng, Arman Cohan, Anh Tuan Luu, Chen Zhao,
- Abstract summary: We present the first systematic study of the diffusion language embedding model, which outperforms the LLM-based embedding model by 20% on long-document retrieval.<n>Our analysis verifies that bidirectional attention is crucial for encoding global context in long and complex text.
- Score: 40.29094043868067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model (LLM)-based embedding models, benefiting from large scale pre-training and post-training, have begun to surpass BERT and T5-based models on general-purpose text embedding tasks such as document retrieval. However, a fundamental limitation of LLM embeddings lies in the unidirectional attention used during autoregressive pre-training, which misaligns with the bidirectional nature of text embedding tasks. To this end, We propose adopting diffusion language models for text embeddings, motivated by their inherent bidirectional architecture and recent success in matching or surpassing LLMs especially on reasoning tasks. We present the first systematic study of the diffusion language embedding model, which outperforms the LLM-based embedding model by 20% on long-document retrieval, 8% on reasoning-intensive retrieval, 2% on instruction-following retrieval, and achieve competitive performance on traditional text embedding benchmarks. Our analysis verifies that bidirectional attention is crucial for encoding global context in long and complex text.
Related papers
- Causal2Vec: Improving Decoder-only LLMs as Versatile Embedding Models [3.8688081072587326]
Causal2Vec is a general-purpose embedding model tailored to enhance the performance of decoder-only large language models.<n>We first employ a lightweight BERT-style model to pre-encode the input text into a single Contextual token.<n>To mitigate the recency bias by last-token pooling, we introduced the last hidden states of Contextual and EOS tokens as the final text embedding.
arXiv Detail & Related papers (2025-07-31T10:01:11Z) - Unify Graph Learning with Text: Unleashing LLM Potentials for Session Search [35.20525123189316]
Session search involves a series of interactive queries and actions to fulfill user's complex information need.<n>Current strategies typically prioritize sequential modeling for deep semantic understanding, overlooking the graph structure in interactions.<n>We propose Symbolic Graph Ranker (SGR), which aims to take advantage of both text-based and graph-based approaches.
arXiv Detail & Related papers (2025-05-20T10:05:06Z) - Semantic Consistency Regularization with Large Language Models for Semi-supervised Sentiment Analysis [20.503153899462323]
We propose a framework for semi-supervised sentiment analysis.<n>We introduce two prompting strategies to semantically enhance unlabeled text.<n> Experiments show our method achieves remarkable performance over prior semi-supervised methods.
arXiv Detail & Related papers (2025-01-29T12:03:11Z) - LLMs are Also Effective Embedding Models: An In-depth Overview [41.34518828980852]
Large language models (LLMs) have revolutionized natural language processing by achieving state-of-the-art performance across various tasks.<n>Recently, their effectiveness as embedding models has gained attention, marking a paradigm shift from traditional encoder-only models like ELMo and BERT to decoder-only, large-scale LLMs like GPT, LLaMA, and Mistral.
arXiv Detail & Related papers (2024-12-17T06:48:24Z) - A Bayesian Approach to Harnessing the Power of LLMs in Authorship Attribution [57.309390098903]
Authorship attribution aims to identify the origin or author of a document.
Large Language Models (LLMs) with their deep reasoning capabilities and ability to maintain long-range textual associations offer a promising alternative.
Our results on the IMDb and blog datasets show an impressive 85% accuracy in one-shot authorship classification across ten authors.
arXiv Detail & Related papers (2024-10-29T04:14:23Z) - Towards Reliable Detection of LLM-Generated Texts: A Comprehensive Evaluation Framework with CUDRT [9.682499180341273]
Large language models (LLMs) have significantly advanced text generation, but the human-like quality of their outputs presents major challenges.<n>We propose CUDRT, a comprehensive evaluation framework and bilingual benchmark in Chinese and English.<n>This framework supports scalable, reproducible experiments and enables analysis of how operational diversity, multilingual training sets, and LLM architectures influence detection performance.
arXiv Detail & Related papers (2024-06-13T12:43:40Z) - A Novel Paradigm Boosting Translation Capabilities of Large Language Models [11.537249547487045]
The paper proposes a novel paradigm consisting of three stages: Secondary Pre-training using Extensive Monolingual Data, Continual Pre-training with Interlinear Text Format Documents, and Leveraging Source-Language Consistent Instruction for Supervised Fine-Tuning.
Experimental results conducted using the Llama2 model, particularly on Chinese-Llama2, demonstrate the improved translation capabilities of LLMs.
arXiv Detail & Related papers (2024-03-18T02:53:49Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
We introduce a new unsupervised text embedding method, Meta-Task Prompting with Explicit One-Word Limitation.
We generate high-quality sentence embeddings from Large Language Models without the need for model fine-tuning.
Our findings suggest a new scaling law, offering a versatile and resource-efficient approach for embedding generation across diverse scenarios.
arXiv Detail & Related papers (2024-02-28T16:35:52Z) - Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$ is a framework designed for the pre-training of visually conditioned language generation models.
We show that our approach accelerates the training of vision-language models by a factor of 5 without a noticeable impact on overall performance.
arXiv Detail & Related papers (2023-10-05T03:40:06Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Towards Making the Most of Context in Neural Machine Translation [112.9845226123306]
We argue that previous research did not make a clear use of the global context.
We propose a new document-level NMT framework that deliberately models the local context of each sentence.
arXiv Detail & Related papers (2020-02-19T03:30:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.