Robust Relevance Feedback for Interactive Known-Item Video Search
- URL: http://arxiv.org/abs/2505.15128v1
- Date: Wed, 21 May 2025 05:31:49 GMT
- Title: Robust Relevance Feedback for Interactive Known-Item Video Search
- Authors: Zhixin Ma, Chong-Wah Ngo,
- Abstract summary: We introduce a pairwise relative judgment feedback that improves the stability of top-k selections.<n>We decompose user perception into multiple sub-perceptions, each represented as an independent embedding space.<n>We develop a predictive user model that estimates the combination of sub-perceptions based on each user feedback instance.
- Score: 30.382002857815497
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Known-item search (KIS) involves only a single search target, making relevance feedback-typically a powerful technique for efficiently identifying multiple positive examples to infer user intent-inapplicable. PicHunter addresses this issue by asking users to select the top-k most similar examples to the unique search target from a displayed set. Under ideal conditions, when the user's perception aligns closely with the machine's perception of similarity, consistent and precise judgments can elevate the target to the top position within a few iterations. However, in practical scenarios, expecting users to provide consistent judgments is often unrealistic, especially when the underlying embedding features used for similarity measurements lack interpretability. To enhance robustness, we first introduce a pairwise relative judgment feedback that improves the stability of top-k selections by mitigating the impact of misaligned feedback. Then, we decompose user perception into multiple sub-perceptions, each represented as an independent embedding space. This approach assumes that users may not consistently align with a single representation but are more likely to align with one or several among multiple representations. We develop a predictive user model that estimates the combination of sub-perceptions based on each user feedback instance. The predictive user model is then trained to filter out the misaligned sub-perceptions. Experimental evaluations on the large-scale open-domain dataset V3C indicate that the proposed model can optimize over 60% search targets to the top rank when their initial ranks at the search depth between 10 and 50. Even for targets initially ranked between 1,000 and 5,000, the model achieves a success rate exceeding 40% in optimizing ranks to the top, demonstrating the enhanced robustness of relevance feedback in KIS despite inconsistent feedback.
Related papers
- Sampling Preferences Yields Simple Trustworthiness Scores [0.0]
This work introduces preference sampling, a method to extract a scalar trustworthiness score from multi-dimensional evaluation results.<n>We find that preference sampling is consistently reductive, fully reducing the set of candidate models 100% of the time.
arXiv Detail & Related papers (2025-06-03T21:14:35Z) - Individualised Counterfactual Examples Using Conformal Prediction Intervals [12.895240620484572]
High-dimensional feature spaces that are typical of machine learning classification models admit many possible counterfactual examples to a decision.<n>We explicitly model the knowledge of the individual, and assess the uncertainty of predictions which the individual makes by the width of a conformal prediction interval.<n>We present a synthetic data set on a hypercube which allows us to fully visualise the decision boundary.<n>Second, in this synthetic data set we explore the impact of a single CPICF on the knowledge of an individual locally around the original query.
arXiv Detail & Related papers (2025-05-28T13:13:52Z) - Mind the Gap! Static and Interactive Evaluations of Large Audio Models [55.87220295533817]
Large Audio Models (LAMs) are designed to power voice-native experiences.<n>This study introduces an interactive approach to evaluate LAMs and collect 7,500 LAM interactions from 484 participants.
arXiv Detail & Related papers (2025-02-21T20:29:02Z) - Unbiased Learning to Rank with Query-Level Click Propensity Estimation: Beyond Pointwise Observation and Relevance [74.43264459255121]
In real-world scenarios, users often click only one or two results after examining multiple relevant options.<n>We propose a query-level click propensity model to capture the probability that users will click on different result lists.<n>Our method introduces a Dual Inverse Propensity Weighting mechanism to address both relevance saturation and position bias.
arXiv Detail & Related papers (2025-02-17T03:55:51Z) - Conformal Prediction in Multi-User Settings: An Evaluation [0.10231119246773925]
Machine learning models are trained and evaluated without making any distinction between users.
This produces inaccurate performance metrics estimates in multi-user settings.
In this work we evaluated the conformal prediction framework in several multi-user settings.
arXiv Detail & Related papers (2023-12-08T17:33:23Z) - End-to-End Context-Aided Unicity Matching for Person Re-identification [100.02321122258638]
We propose an end-to-end person unicity matching architecture for learning and refining the person matching relations.
We use the samples' global context relationship to refine the soft matching results and reach the matching unicity through bipartite graph matching.
Given full consideration to real-world person re-identification applications, we achieve the unicity matching in both one-shot and multi-shot settings.
arXiv Detail & Related papers (2022-10-20T07:33:57Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
Unbiased learning to rank algorithms are appealing candidates and have already been applied in many applications with single categorical labels.
We propose a novel unbiased LTR algorithm to tackle the challenges, which innovatively models position bias in the pairwise fashion.
Experiment results on public benchmark datasets and internal live traffic show the superior results of the proposed method for both categorical and continuous labels.
arXiv Detail & Related papers (2021-11-25T06:04:59Z) - Set2setRank: Collaborative Set to Set Ranking for Implicit Feedback
based Recommendation [59.183016033308014]
In this paper, we explore the unique characteristics of the implicit feedback and propose Set2setRank framework for recommendation.
Our proposed framework is model-agnostic and can be easily applied to most recommendation prediction approaches.
arXiv Detail & Related papers (2021-05-16T08:06:22Z) - SetRank: A Setwise Bayesian Approach for Collaborative Ranking from
Implicit Feedback [50.13745601531148]
We propose a novel setwise Bayesian approach for collaborative ranking, namely SetRank, to accommodate the characteristics of implicit feedback in recommender system.
Specifically, SetRank aims at maximizing the posterior probability of novel setwise preference comparisons.
We also present the theoretical analysis of SetRank to show that the bound of excess risk can be proportional to $sqrtM/N$.
arXiv Detail & Related papers (2020-02-23T06:40:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.