Individualised Counterfactual Examples Using Conformal Prediction Intervals
- URL: http://arxiv.org/abs/2505.22326v1
- Date: Wed, 28 May 2025 13:13:52 GMT
- Title: Individualised Counterfactual Examples Using Conformal Prediction Intervals
- Authors: James M. Adams, Gesine Reinert, Lukasz Szpruch, Carsten Maple, Andrew Elliott,
- Abstract summary: High-dimensional feature spaces that are typical of machine learning classification models admit many possible counterfactual examples to a decision.<n>We explicitly model the knowledge of the individual, and assess the uncertainty of predictions which the individual makes by the width of a conformal prediction interval.<n>We present a synthetic data set on a hypercube which allows us to fully visualise the decision boundary.<n>Second, in this synthetic data set we explore the impact of a single CPICF on the knowledge of an individual locally around the original query.
- Score: 12.895240620484572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Counterfactual explanations for black-box models aim to pr ovide insight into an algorithmic decision to its recipient. For a binary classification problem an individual counterfactual details which features might be changed for the model to infer the opposite class. High-dimensional feature spaces that are typical of machine learning classification models admit many possible counterfactual examples to a decision, and so it is important to identify additional criteria to select the most useful counterfactuals. In this paper, we explore the idea that the counterfactuals should be maximally informative when considering the knowledge of a specific individual about the underlying classifier. To quantify this information gain we explicitly model the knowledge of the individual, and assess the uncertainty of predictions which the individual makes by the width of a conformal prediction interval. Regions of feature space where the prediction interval is wide correspond to areas where the confidence in decision making is low, and an additional counterfactual example might be more informative to an individual. To explore and evaluate our individualised conformal prediction interval counterfactuals (CPICFs), first we present a synthetic data set on a hypercube which allows us to fully visualise the decision boundary, conformal intervals via three different methods, and resultant CPICFs. Second, in this synthetic data set we explore the impact of a single CPICF on the knowledge of an individual locally around the original query. Finally, in both our synthetic data set and a complex real world dataset with a combination of continuous and discrete variables, we measure the utility of these counterfactuals via data augmentation, testing the performance on a held out set.
Related papers
- A Dataset for Semantic Segmentation in the Presence of Unknowns [49.795683850385956]
Existing datasets allow evaluation of only knowns or unknowns - but not both.<n>We propose a novel anomaly segmentation dataset, ISSU, that features a diverse set of anomaly inputs from cluttered real-world environments.<n>The dataset is twice larger than existing anomaly segmentation datasets.
arXiv Detail & Related papers (2025-03-28T10:31:01Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Detecting and Identifying Selection Structure in Sequential Data [53.24493902162797]
We argue that the selective inclusion of data points based on latent objectives is common in practical situations, such as music sequences.
We show that selection structure is identifiable without any parametric assumptions or interventional experiments.
We also propose a provably correct algorithm to detect and identify selection structures as well as other types of dependencies.
arXiv Detail & Related papers (2024-06-29T20:56:34Z) - Balancing Fairness and Accuracy in Data-Restricted Binary Classification [14.439413517433891]
This paper proposes a framework that models the trade-off between accuracy and fairness under four practical scenarios.
Experiments on three datasets demonstrate the utility of the proposed framework as a tool for quantifying the trade-offs.
arXiv Detail & Related papers (2024-03-12T15:01:27Z) - Intrinsic User-Centric Interpretability through Global Mixture of Experts [31.738009841932374]
InterpretCC is a family of intrinsically interpretable neural networks that optimize for ease of human understanding and explanation faithfulness.<n>We show that InterpretCC explanations are found to have higher actionability and usefulness over other intrinsically interpretable approaches.
arXiv Detail & Related papers (2024-02-05T11:55:50Z) - Generating collective counterfactual explanations in score-based
classification via mathematical optimization [4.281723404774889]
A counterfactual explanation of an instance indicates how this instance should be minimally modified so that the perturbed instance is classified in the desired class.
Most of the Counterfactual Analysis literature focuses on the single-instance single-counterfactual setting.
By means of novel Mathematical Optimization models, we provide a counterfactual explanation for each instance in a group of interest.
arXiv Detail & Related papers (2023-10-19T15:18:42Z) - Supervised Feature Compression based on Counterfactual Analysis [3.2458225810390284]
This work aims to leverage Counterfactual Explanations to detect the important decision boundaries of a pre-trained black-box model.
Using the discretized dataset, an optimal Decision Tree can be trained that resembles the black-box model, but that is interpretable and compact.
arXiv Detail & Related papers (2022-11-17T21:16:14Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Uncertainty-Autoencoder-Based Privacy and Utility Preserving Data Type
Conscious Transformation [3.7315964084413173]
We propose an adversarial learning framework that deals with the privacy-utility tradeoff problem under two conditions.
Under data-type ignorant conditions, the privacy mechanism provides a one-hot encoding of categorical features, representing exactly one class.
Under data-type aware conditions, the categorical variables are represented by a collection of scores, one for each class.
arXiv Detail & Related papers (2022-05-04T08:40:15Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.