lmgame-Bench: How Good are LLMs at Playing Games?
- URL: http://arxiv.org/abs/2505.15146v1
- Date: Wed, 21 May 2025 06:02:55 GMT
- Title: lmgame-Bench: How Good are LLMs at Playing Games?
- Authors: Lanxiang Hu, Mingjia Huo, Yuxuan Zhang, Haoyang Yu, Eric P. Xing, Ion Stoica, Tajana Rosing, Haojian Jin, Hao Zhang,
- Abstract summary: We study the major challenges in using popular video games to evaluate modern large language model (LLM) agents.<n>We introduce lmgame-Bench to turn games into reliable evaluations.
- Score: 60.01834131847881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Playing video games requires perception, memory, and planning, exactly the faculties modern large language model (LLM) agents are expected to master. We study the major challenges in using popular video games to evaluate modern LLMs and find that directly dropping LLMs into games cannot make an effective evaluation, for three reasons -- brittle vision perception, prompt sensitivity, and potential data contamination. We introduce lmgame-Bench to turn games into reliable evaluations. lmgame-Bench features a suite of platformer, puzzle, and narrative games delivered through a unified Gym-style API and paired with lightweight perception and memory scaffolds, and is designed to stabilize prompt variance and remove contamination. Across 13 leading models, we show lmgame-Bench is challenging while still separating models well. Correlation analysis shows that every game probes a unique blend of capabilities often tested in isolation elsewhere. More interestingly, performing reinforcement learning on a single game from lmgame-Bench transfers both to unseen games and to external planning tasks. Our evaluation code is available at https://github.com/lmgame-org/GamingAgent/lmgame-bench.
Related papers
- Orak: A Foundational Benchmark for Training and Evaluating LLM Agents on Diverse Video Games [16.187737674778234]
We present textbfbenchname, a benchmark designed to train and evaluate Large Language Model (LLM) agents across diverse real-world video games.<n>To support consistent evaluation of LLMs, we introduce a plug-and-play interface based on Model Context Protocol (MCP)<n>Orak offers a comprehensive evaluation framework, encompassing general game score leaderboards, LLM battle arenas, and in-depth analyses of visual input state, agentic strategies, and fine-tuning effects.
arXiv Detail & Related papers (2025-06-04T06:40:33Z) - VideoGameBench: Can Vision-Language Models complete popular video games? [8.5302862604852]
Video games are crafted to be intuitive for humans to learn and master by leveraging innate inductive biases.<n>We introduce VideoGameBench, a benchmark consisting of 10 popular video games from the 1990s that VLMs directly interact with in real-time.<n>We show that frontier vision-language models struggle to progress beyond the beginning of each game.
arXiv Detail & Related papers (2025-05-23T17:43:27Z) - Beyond Outcomes: Transparent Assessment of LLM Reasoning in Games [54.49589494014147]
GAMEBoT is a gaming arena designed for rigorous assessment of Large Language Models.<n>We benchmark 17 prominent LLMs across eight games, encompassing various strategic abilities and game characteristics.<n>Our results suggest that GAMEBoT presents a significant challenge, even when LLMs are provided with detailed CoT prompts.
arXiv Detail & Related papers (2024-12-18T08:32:53Z) - GameArena: Evaluating LLM Reasoning through Live Computer Games [25.415321902887598]
We introduce GameArena, a benchmark to evaluate large language models (LLMs) reasoning capabilities through interactive gameplay with humans.<n>GameArena consists of three games to test specific reasoning capabilities (e.g., deductive and inductive reasoning) while keeping participants entertained and engaged.<n>We collect over 2000 game sessions and provide detailed assessments of various reasoning capabilities for five state-of-the-art LLMs.
arXiv Detail & Related papers (2024-12-09T11:22:59Z) - LLMs May Not Be Human-Level Players, But They Can Be Testers: Measuring Game Difficulty with LLM Agents [10.632179121247466]
We propose a general game-testing framework using LLM agents and test it on two widely played strategy games: Wordle and Slay the Spire.
Our results reveal an interesting finding: although LLMs may not perform as well as the average human player, their performance, when guided by simple, generic prompting techniques, shows a statistically significant and strong correlation with difficulty indicated by human players.
This suggests that LLMs could serve as effective agents for measuring game difficulty during the development process.
arXiv Detail & Related papers (2024-10-01T18:40:43Z) - How Far Are We on the Decision-Making of LLMs? Evaluating LLMs' Gaming Ability in Multi-Agent Environments [83.78240828340681]
GAMA($gamma$)-Bench is a new framework for evaluating Large Language Models' Gaming Ability in Multi-Agent environments.<n>$gamma$-Bench includes eight classical game theory scenarios and a dynamic scoring scheme specially designed to assess LLMs' performance.<n>Our results indicate GPT-3.5 demonstrates strong robustness but limited generalizability, which can be enhanced using methods like Chain-of-Thought.
arXiv Detail & Related papers (2024-03-18T14:04:47Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
Large Language Models (LLMs) are integrated into critical real-world applications.
This paper evaluates LLMs' reasoning abilities in competitive environments.
We first propose GTBench, a language-driven environment composing 10 widely recognized tasks.
arXiv Detail & Related papers (2024-02-19T18:23:36Z) - Avalon's Game of Thoughts: Battle Against Deception through Recursive
Contemplation [80.126717170151]
This study utilizes the intricate Avalon game as a testbed to explore LLMs' potential in deceptive environments.
We introduce a novel framework, Recursive Contemplation (ReCon), to enhance LLMs' ability to identify and counteract deceptive information.
arXiv Detail & Related papers (2023-10-02T16:27:36Z) - GameEval: Evaluating LLMs on Conversational Games [93.40433639746331]
We propose GameEval, a novel approach to evaluating large language models (LLMs)
GameEval treats LLMs as game players and assigns them distinct roles with specific goals achieved by launching conversations of various forms.
We show that GameEval can effectively differentiate the capabilities of various LLMs, providing a comprehensive assessment of their integrated abilities to solve complex problems.
arXiv Detail & Related papers (2023-08-19T14:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.