Finding separatrices of dynamical flows with Deep Koopman Eigenfunctions
- URL: http://arxiv.org/abs/2505.15231v1
- Date: Wed, 21 May 2025 08:04:31 GMT
- Title: Finding separatrices of dynamical flows with Deep Koopman Eigenfunctions
- Authors: Kabir V. Dabholkar, Omri Barak,
- Abstract summary: We introduce a numerical framework leveraging Koopman Theory combined with Deep Neural Networks to effectively characterize separatrices.<n>Specifically, we approximate Koopman Eigenfunctions (KEFs) associated with real positive eigenvalues, which vanish precisely at the separatrices.<n>We demonstrate our approach on synthetic benchmarks, ecological network models, and recurrent neural networks trained on neuroscience-inspired tasks.
- Score: 4.849550522970842
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many natural systems, including neural circuits involved in decision making, can be modeled as high-dimensional dynamical systems with multiple stable states. While existing analytical tools primarily describe behavior near stable equilibria, characterizing separatrices -- the manifolds that delineate boundaries between different basins of attraction -- remains challenging, particularly in high-dimensional settings. Here, we introduce a numerical framework leveraging Koopman Theory combined with Deep Neural Networks to effectively characterize separatrices. Specifically, we approximate Koopman Eigenfunctions (KEFs) associated with real positive eigenvalues, which vanish precisely at the separatrices. Utilizing these scalar KEFs, optimization methods efficiently locate separatrices even in complex systems. We demonstrate our approach on synthetic benchmarks, ecological network models, and recurrent neural networks trained on neuroscience-inspired tasks. Moreover, we illustrate the practical utility of our method by designing optimal perturbations that can shift systems across separatrices, enabling predictions relevant to optogenetic stimulation experiments in neuroscience.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - Certified Neural Approximations of Nonlinear Dynamics [52.79163248326912]
In safety-critical contexts, the use of neural approximations requires formal bounds on their closeness to the underlying system.<n>We propose a novel, adaptive, and parallelizable verification method based on certified first-order models.
arXiv Detail & Related papers (2025-05-21T13:22:20Z) - High-order expansion of Neural Ordinary Differential Equations flows [4.4569182855550755]
We introduce Event Transitions, a framework based on high-order differentials that provides a rigorous mathematical description of neural ODE dynamics on event gradient.<n>Our findings contribute to a deeper theoretical foundation for event-triggered neural differential equations and provide a mathematical construct for explaining complex system dynamics.
arXiv Detail & Related papers (2025-04-02T08:57:34Z) - Neural Manifolds and Cognitive Consistency: A New Approach to Memory Consolidation in Artificial Systems [0.0]
We introduce a novel mathematical framework that unifies neural population dynamics, hippocampal sharp wave-ripple (SpWR) generation, and cognitive consistency constraints inspired by Heider's theory.<n>Our model leverages low-dimensional manifold representations to capture structured neural drift and incorporates a balance energy function to enforce coherent synaptic interactions.<n>This work paves the way for scalable neuromorphic architectures that bridge neuroscience and artificial intelligence, offering more robust and adaptive learning mechanisms for future intelligent systems.
arXiv Detail & Related papers (2025-02-25T18:28:25Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
We analyze the rich directional structure of optimization trajectories represented by their pointwise parameters.
We show that training only scalar batchnorm parameters some while into training matches the performance of training the entire network.
arXiv Detail & Related papers (2024-03-12T07:32:47Z) - Deep Learning-based Analysis of Basins of Attraction [49.812879456944984]
This research addresses the challenge of characterizing the complexity and unpredictability of basins within various dynamical systems.
The main focus is on demonstrating the efficiency of convolutional neural networks (CNNs) in this field.
arXiv Detail & Related papers (2023-09-27T15:41:12Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems [7.045072177165241]
We augment a piecewise-linear recurrent neural network (RNN) by a linear spline basis expansion.
We show that this approach retains all the theoretically appealing properties of the simple PLRNN, yet boosts its capacity for approximating arbitrary nonlinear dynamical systems in comparatively low dimensions.
arXiv Detail & Related papers (2022-07-06T09:43:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.