DiffProb: Data Pruning for Face Recognition
- URL: http://arxiv.org/abs/2505.15272v1
- Date: Wed, 21 May 2025 08:49:07 GMT
- Title: DiffProb: Data Pruning for Face Recognition
- Authors: Eduarda Caldeira, Jan Niklas Kolf, Naser Damer, Fadi Boutros,
- Abstract summary: This paper presents DiffProb, the first data pruning approach for the application of face recognition.<n>We show that DiffProb can prune up to 50% of the dataset while maintaining or even, in some settings, improving the verification accuracies.<n>Our method significantly reduces training cost and data volume, enabling efficient face recognition training.
- Score: 8.394561876328808
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Face recognition models have made substantial progress due to advances in deep learning and the availability of large-scale datasets. However, reliance on massive annotated datasets introduces challenges related to training computational cost and data storage, as well as potential privacy concerns regarding managing large face datasets. This paper presents DiffProb, the first data pruning approach for the application of face recognition. DiffProb assesses the prediction probabilities of training samples within each identity and prunes the ones with identical or close prediction probability values, as they are likely reinforcing the same decision boundaries, and thus contribute minimally with new information. We further enhance this process with an auxiliary cleaning mechanism to eliminate mislabeled and label-flipped samples, boosting data quality with minimal loss. Extensive experiments on CASIA-WebFace with different pruning ratios and multiple benchmarks, including LFW, CFP-FP, and IJB-C, demonstrate that DiffProb can prune up to 50% of the dataset while maintaining or even, in some settings, improving the verification accuracies. Additionally, we demonstrate DiffProb's robustness across different architectures and loss functions. Our method significantly reduces training cost and data volume, enabling efficient face recognition training and reducing the reliance on massive datasets and their demanding management.
Related papers
- Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
We formalize the concept of trajectory-specific leave-one-out influence, which quantifies the impact of removing a data point during training.<n>We propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO.<n>As data value embedding captures training data ordering, it offers valuable insights into model training dynamics.
arXiv Detail & Related papers (2024-12-12T18:28:55Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Distribution-Level Feature Distancing for Machine Unlearning: Towards a Better Trade-off Between Model Utility and Forgetting [4.220336689294245]
We propose Distribution-Level Feature Distancing (DLFD), a novel method that efficiently forgets instances while preserving task-relevant feature correlations.<n>Our method synthesizes data samples by optimizing the feature distribution to be distinctly different from that of forget samples, achieving effective results within a single training epoch.
arXiv Detail & Related papers (2024-09-23T06:51:10Z) - PairCFR: Enhancing Model Training on Paired Counterfactually Augmented Data through Contrastive Learning [49.60634126342945]
Counterfactually Augmented Data (CAD) involves creating new data samples by applying minimal yet sufficient modifications to flip the label of existing data samples to other classes.
Recent research reveals that training with CAD may lead models to overly focus on modified features while ignoring other important contextual information.
We employ contrastive learning to promote global feature alignment in addition to learning counterfactual clues.
arXiv Detail & Related papers (2024-06-09T07:29:55Z) - DiffsFormer: A Diffusion Transformer on Stock Factor Augmentation [36.75453713794983]
We introduce the Diffusion Model to generate stock factors with Transformer architecture (DiffsFormer)
When presented with a specific downstream task, we employ DiffsFormer to augment the training procedure by editing existing samples.
The proposed method achieves relative improvements of 7.2% and 27.8% in annualized return ratio for the respective datasets.
arXiv Detail & Related papers (2024-02-05T03:54:36Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - Boosting Unconstrained Face Recognition with Auxiliary Unlabeled Data [59.85605718477639]
We present an approach to use unlabeled faces to learn generalizable face representations.
Experimental results on unconstrained datasets show that a small amount of unlabeled data with sufficient diversity can lead to an appreciable gain in recognition performance.
arXiv Detail & Related papers (2020-03-17T20:58:56Z) - Deep Multi-Facial Patches Aggregation Network For Facial Expression
Recognition [5.735035463793008]
We propose an approach for Facial Expressions Recognition (FER) based on a deep multi-facial patches aggregation network.
Deep features are learned from facial patches using deep sub-networks and aggregated within one deep architecture for expression classification.
arXiv Detail & Related papers (2020-02-20T17:57:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.