When Can Large Reasoning Models Save Thinking? Mechanistic Analysis of Behavioral Divergence in Reasoning
- URL: http://arxiv.org/abs/2505.15276v1
- Date: Wed, 21 May 2025 08:55:35 GMT
- Title: When Can Large Reasoning Models Save Thinking? Mechanistic Analysis of Behavioral Divergence in Reasoning
- Authors: Rongzhi Zhu, Yi Liu, Zequn Sun, Yiwei Wang, Wei Hu,
- Abstract summary: Large reasoning models (LRMs) have significantly advanced performance on complex tasks, yet their tendency to overthink introduces inefficiencies.<n>This study investigates the internal mechanisms of reinforcement learning (RL)-trained LRMs when prompted to save thinking.
- Score: 19.329523111916682
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large reasoning models (LRMs) have significantly advanced performance on complex tasks, yet their tendency to overthink introduces inefficiencies. This study investigates the internal mechanisms of reinforcement learning (RL)-trained LRMs when prompted to save thinking, revealing three distinct thinking modes: no thinking (NT), explicit thinking (ET), and implicit thinking (IT). Through comprehensive analysis of confidence in thinking termination, attention from thinking to generation, and attentional focus on input sections, we uncover key factors influencing the reasoning behaviors. We further find that NT reduces output length at the cost of accuracy, while ET and IT maintain accuracy with reduced response length. Our findings expose fundamental inconsistencies in RL-optimized LRMs, necessitating adaptive improvements for reliable efficiency.
Related papers
- Think How to Think: Mitigating Overthinking with Autonomous Difficulty Cognition in Large Reasoning Models [12.618562275265704]
Recent Large Reasoning Models (LRMs) excel at complex reasoning tasks but often suffer from overthinking.<n>We propose Think-How-to-Think (TH2T), a novel two-stage fine-tuning strategy that progressively inspires LRMs' difficulty cognition and redundancy cognition.
arXiv Detail & Related papers (2025-07-03T14:24:26Z) - Is Long-to-Short a Free Lunch? Investigating Inconsistency and Reasoning Efficiency in LRMs [8.359909829007005]
We investigate whether efficient reasoning strategies introduce behavioral inconsistencies in large reasoning models (LRMs)<n>$ICBENCH$ is a benchmark designed to measure inconsistency in LRMs across three dimensions.<n>We find that while larger models generally exhibit greater consistency than smaller ones, they all display widespread "scheming" behaviors.
arXiv Detail & Related papers (2025-06-24T10:25:28Z) - Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
Large reasoning models (LRMs) exhibit overthinking, which hinders efficiency and inflates inference cost.<n>We propose two lightweight methods to enhance LRM efficiency.<n>First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction.<n>Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity.
arXiv Detail & Related papers (2025-06-18T17:18:12Z) - Two Experts Are All You Need for Steering Thinking: Reinforcing Cognitive Effort in MoE Reasoning Models Without Additional Training [86.70255651945602]
We introduce a novel inference-time steering methodology called Reinforcing Cognitive Experts (RICE)<n>RICE aims to improve reasoning performance without additional training or complexs.<n> Empirical evaluations with leading MoE-based LRMs demonstrate noticeable and consistent improvements in reasoning accuracy, cognitive efficiency, and cross-domain generalization.
arXiv Detail & Related papers (2025-05-20T17:59:16Z) - Let LLMs Break Free from Overthinking via Self-Braking Tuning [60.08396797526657]
Large reasoning models (LRMs) have significantly enhanced their reasoning capabilities by generating longer chains of thought.<n>This performance gain comes at the cost of a substantial increase in redundant reasoning during the generation process.<n>We propose a novel framework, Self-Braking Tuning (SBT), which tackles overthinking from the perspective of allowing the model to regulate its own reasoning process.
arXiv Detail & Related papers (2025-05-20T16:53:40Z) - Concise Reasoning via Reinforcement Learning [13.657506042120167]
We revisit the core principles of reinforcement learning (RL)<n>We uncover a natural correlation between conciseness and accuracy that has been largely overlooked.<n>We show that introducing a secondary phase of RL training, using a very small set of problems, can significantly reduce chains of thought.
arXiv Detail & Related papers (2025-04-07T15:35:54Z) - Trade-offs in Large Reasoning Models: An Empirical Analysis of Deliberative and Adaptive Reasoning over Foundational Capabilities [101.77467538102924]
Recent advancements in Large Reasoning Models (LRMs) have demonstrated remarkable performance in specialized reasoning tasks.<n>We show that acquiring deliberative reasoning capabilities significantly reduces the foundational capabilities of LRMs.<n>We demonstrate that adaptive reasoning -- employing modes like Zero-Thinking, Less-Thinking, and Summary-Thinking -- can effectively alleviate these drawbacks.
arXiv Detail & Related papers (2025-03-23T08:18:51Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.<n>Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - The Danger of Overthinking: Examining the Reasoning-Action Dilemma in Agentic Tasks [96.27754404942364]
Large Reasoning Models (LRMs) represent a breakthrough in AI problem-solving capabilities, but their effectiveness in interactive environments can be limited.<n>This paper introduces and analyzes overthinking in LRMs.<n>We observe three recurring patterns: Analysis Paralysis, Rogue Actions, and Premature Disengagement.
arXiv Detail & Related papers (2025-02-12T09:23:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.