Think How to Think: Mitigating Overthinking with Autonomous Difficulty Cognition in Large Reasoning Models
- URL: http://arxiv.org/abs/2507.02663v2
- Date: Wed, 06 Aug 2025 14:55:31 GMT
- Title: Think How to Think: Mitigating Overthinking with Autonomous Difficulty Cognition in Large Reasoning Models
- Authors: Yongjiang Liu, Haoxi Li, Xiaosong Ma, Jie Zhang, Song Guo,
- Abstract summary: Recent Large Reasoning Models (LRMs) excel at complex reasoning tasks but often suffer from overthinking.<n>We propose Think-How-to-Think (TH2T), a novel two-stage fine-tuning strategy that progressively inspires LRMs' difficulty cognition and redundancy cognition.
- Score: 12.618562275265704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent Large Reasoning Models (LRMs) excel at complex reasoning tasks but often suffer from overthinking, generating overly long and redundant reasoning trajectories. To explore its essence, our empirical analysis reveals that LRMs are primarily limited to recognizing task properties (i.e., difficulty levels) like humans before solving the problem, leading to a one-size-fits-all reasoning process. Inspired by this, a pressing and natural question emerges: Can we explicitly bootstrap such ability to alleviate overthinking in LRMs? In this paper, we propose Think-How-to-Think (TH2T), a novel two-stage fine-tuning strategy that progressively inspires LRMs' difficulty cognition and redundancy cognition of LRMs. Specifically, we first inject difficulty hypnosis into output prefixes to guide the model toward adaptive reasoning depth, trained on a hybrid dataset mixing short and long reasoning paths. Then, we incorporate redundancy hypnosis, which supervises the intermediate reasoning steps to identify and eliminate unnecessary reasoning patterns. Experiments on 7B/14B/32B models demonstrate that TH2T significantly reduces inference costs by over 70% on easy tasks and 40% on hard tasks while maintaining performance stability. The resulting outputs exhibit clear signs of difficulty-aware capabilities and reduced redundancy (e.g., reflection and looping).
Related papers
- Towards Concise and Adaptive Thinking in Large Reasoning Models: A Survey [8.736170026262279]
Large reasoning models (LRMs) like OpenAI o1 and DeepSeek R1 have demonstrated impressive performance on complex reasoning tasks.<n>These models also face a huge challenge that generating unnecessarily lengthy and redundant reasoning chains.
arXiv Detail & Related papers (2025-07-13T14:51:59Z) - Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
Large reasoning models (LRMs) exhibit overthinking, which hinders efficiency and inflates inference cost.<n>We propose two lightweight methods to enhance LRM efficiency.<n>First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction.<n>Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity.
arXiv Detail & Related papers (2025-06-18T17:18:12Z) - The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity [16.266145641151375]
Large Reasoning Models generate detailed thinking processes before providing answers.<n>We show that LRMs face a complete accuracy collapse beyond certain complexities.<n>We also investigate the reasoning traces in more depth, studying the patterns of explored solutions.
arXiv Detail & Related papers (2025-06-07T22:42:29Z) - OThink-R1: Intrinsic Fast/Slow Thinking Mode Switching for Over-Reasoning Mitigation [33.008513399946914]
OThink-R1 is a method that prunes redundant reasoning steps while preserving logical validity.<n> Experiments across mathematical and question-answering tasks demonstrate that OThink-R1 reduces reasoning redundancy by almost 23% on average.
arXiv Detail & Related papers (2025-06-03T03:31:30Z) - Revisiting Overthinking in Long Chain-of-Thought from the Perspective of Self-Doubt [74.35891434097053]
Reasoning Large Language Models (RLLMs) have demonstrated impressive performance on complex tasks.<n>They often exhibit overthinking -- performing unnecessary reasoning steps even after arriving at the correct answer.<n>We present a quantitative analysis of overthinking from the perspective of self-doubt.<n>We introduce a simple and effective prompting method to reduce the model's over-reliance on input questions.
arXiv Detail & Related papers (2025-05-29T14:30:02Z) - CoThink: Token-Efficient Reasoning via Instruct Models Guiding Reasoning Models [56.40065909544213]
Large language models (LLMs) benefit from increased test-time compute, a phenomenon known as test-time scaling.<n>However, reasoning-optimized models often overthink even simple problems, producing excessively verbose outputs and leading to low token efficiency.<n>We identify two key causes of this verbosity: (1) reinforcement learning reduces the information density of forward reasoning, and (2) backward chain-of thought training encourages redundant and often unnecessary verification steps.
arXiv Detail & Related papers (2025-05-28T06:24:45Z) - When Can Large Reasoning Models Save Thinking? Mechanistic Analysis of Behavioral Divergence in Reasoning [19.329523111916682]
Large reasoning models (LRMs) have significantly advanced performance on complex tasks, yet their tendency to overthink introduces inefficiencies.<n>This study investigates the internal mechanisms of reinforcement learning (RL)-trained LRMs when prompted to save thinking.
arXiv Detail & Related papers (2025-05-21T08:55:35Z) - Let LLMs Break Free from Overthinking via Self-Braking Tuning [60.08396797526657]
Large reasoning models (LRMs) have significantly enhanced their reasoning capabilities by generating longer chains of thought.<n>This performance gain comes at the cost of a substantial increase in redundant reasoning during the generation process.<n>We propose a novel framework, Self-Braking Tuning (SBT), which tackles overthinking from the perspective of allowing the model to regulate its own reasoning process.
arXiv Detail & Related papers (2025-05-20T16:53:40Z) - Trade-offs in Large Reasoning Models: An Empirical Analysis of Deliberative and Adaptive Reasoning over Foundational Capabilities [101.77467538102924]
Recent advancements in Large Reasoning Models (LRMs) have demonstrated remarkable performance in specialized reasoning tasks.<n>We show that acquiring deliberative reasoning capabilities significantly reduces the foundational capabilities of LRMs.<n>We demonstrate that adaptive reasoning -- employing modes like Zero-Thinking, Less-Thinking, and Summary-Thinking -- can effectively alleviate these drawbacks.
arXiv Detail & Related papers (2025-03-23T08:18:51Z) - The Danger of Overthinking: Examining the Reasoning-Action Dilemma in Agentic Tasks [96.27754404942364]
Large Reasoning Models (LRMs) represent a breakthrough in AI problem-solving capabilities, but their effectiveness in interactive environments can be limited.<n>This paper introduces and analyzes overthinking in LRMs.<n>We observe three recurring patterns: Analysis Paralysis, Rogue Actions, and Premature Disengagement.
arXiv Detail & Related papers (2025-02-12T09:23:26Z) - Thoughts Are All Over the Place: On the Underthinking of o1-Like LLMs [86.79757571440082]
Large language models (LLMs) such as OpenAI's o1 have demonstrated remarkable abilities in complex reasoning tasks.<n>We identify a phenomenon we term underthinking, where o1-like LLMs frequently switch between different reasoning thoughts.<n>We propose a decoding strategy with thought switching penalty TIP that discourages premature transitions between thoughts.
arXiv Detail & Related papers (2025-01-30T18:58:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.