論文の概要: Real-Time Detection of Insider Threats Using Behavioral Analytics and Deep Evidential Clustering
- arxiv url: http://arxiv.org/abs/2505.15383v1
- Date: Wed, 21 May 2025 11:21:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:59.525521
- Title: Real-Time Detection of Insider Threats Using Behavioral Analytics and Deep Evidential Clustering
- Title(参考訳): 行動分析とディープ・エビデンシャル・クラスタリングを用いたインサイダー脅威のリアルタイム検出
- Authors: Anas Ali, Mubashar Husain, Peter Hans,
- Abstract要約: 本稿では,行動分析と深層的クラスタリングを組み合わせた,インサイダー脅威をリアルタイムに検出するフレームワークを提案する。
本システムは,ユーザの行動を捉え,分析し,文脈に富んだ行動特徴を適用し,潜在的な脅威を分類する。
我々は,CERTやTWOSなどのベンチマークインサイダー脅威データセットについて,平均検出精度94.7%,偽陽性率38%を従来のクラスタリング手法と比較し評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Insider threats represent one of the most critical challenges in modern cybersecurity. These threats arise from individuals within an organization who misuse their legitimate access to harm the organization's assets, data, or operations. Traditional security mechanisms, primarily designed for external attackers, fall short in identifying these subtle and context-aware threats. In this paper, we propose a novel framework for real-time detection of insider threats using behavioral analytics combined with deep evidential clustering. Our system captures and analyzes user activities, applies context-rich behavioral features, and classifies potential threats using a deep evidential clustering model that estimates both cluster assignment and epistemic uncertainty. The proposed model dynamically adapts to behavioral changes and significantly reduces false positives. We evaluate our framework on benchmark insider threat datasets such as CERT and TWOS, achieving an average detection accuracy of 94.7% and a 38% reduction in false positives compared to traditional clustering methods. Our results demonstrate the effectiveness of integrating uncertainty modeling in threat detection pipelines. This research provides actionable insights for deploying intelligent, adaptive, and robust insider threat detection systems across various enterprise environments.
- Abstract(参考訳): インサイダーの脅威は、現代のサイバーセキュリティにおける最も重要な課題の1つだ。
これらの脅威は、組織内の個人が、組織の資産、データ、または運用を傷つけるために正当なアクセスを誤用することから生じる。
従来のセキュリティメカニズムは、主に外部攻撃者向けに設計されており、これらの微妙でコンテキスト対応の脅威を特定するには不十分である。
本稿では,行動分析と深層クラスタリングを組み合わせることで,インサイダー脅威をリアルタイムに検出するフレームワークを提案する。
本システムでは,クラスタ割り当てと疫学的不確実性の両方を推定する深層的クラスタリングモデルを用いて,ユーザアクティビティを捕捉・解析し,コンテキストに富んだ行動特徴を適用し,潜在的な脅威を分類する。
提案モデルは動的に行動変化に適応し, 偽陽性を著しく低減する。
我々は,CERTやTWOSなどのベンチマークインサイダー脅威データセットについて,平均検出精度94.7%,偽陽性率38%を従来のクラスタリング手法と比較し評価した。
本研究は,脅威検出パイプラインにおける不確実性モデルの統合の有効性を示す。
この研究は、様々な企業環境にインテリジェントで適応的で堅牢なインサイダー脅威検知システムを展開するための実用的な洞察を提供する。
関連論文リスト
- Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized Corruptions [49.546479320670464]
本稿では,セグメンテーションモデルの空間的ロバスト性を評価するための特別な指標を紹介する。
本稿では,モデルロバスト性をより深く理解する手法として,地域対応型マルチアタック・アタック・アタック・アタック・アタック・アタック・アタック・アタック・アタック・アタック・アタック・アタック・アタック・アタック分析を提案する。
その結果、モデルがこれらの2種類の脅威に異なる反応を示すことが明らかとなった。
論文 参考訳(メタデータ) (2025-04-02T11:37:39Z) - Autonomous Identity-Based Threat Segmentation in Zero Trust Architectures [4.169915659794567]
Zero Trust Architectures (ZTA) は,"信頼せず,すべてを検証する" アプローチを採用することで,ネットワークセキュリティを根本的に再定義する。
本研究は、ZTAにおけるAI駆動型、自律型、アイデンティティベースの脅威セグメンテーションに適用する。
論文 参考訳(メタデータ) (2025-01-10T15:35:02Z) - A Survey and Evaluation of Adversarial Attacks for Object Detection [11.48212060875543]
深層学習モデルは、信頼できるが誤った予測をすることを欺くような敵対的な例に対して脆弱である。
この脆弱性は、自動運転車、セキュリティ監視、安全クリティカルな検査システムなどの高リスクなアプリケーションに重大なリスクをもたらす。
本稿では,対象検出アーキテクチャに特有の敵攻撃を分類するための新しい分類枠組みを提案する。
論文 参考訳(メタデータ) (2024-08-04T05:22:08Z) - Dynamic Vulnerability Criticality Calculator for Industrial Control Systems [0.0]
本稿では,動的脆弱性臨界計算機を提案する革新的な手法を提案する。
本手法は, 環境トポロジの分析と, 展開されたセキュリティ機構の有効性を包含する。
本手法では,これらの要因を総合的なファジィ認知マップモデルに統合し,攻撃経路を組み込んで全体の脆弱性スコアを総合的に評価する。
論文 参考訳(メタデータ) (2024-03-20T09:48:47Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。