DSCodeBench: A Realistic Benchmark for Data Science Code Generation
- URL: http://arxiv.org/abs/2505.15621v2
- Date: Wed, 02 Jul 2025 20:43:52 GMT
- Title: DSCodeBench: A Realistic Benchmark for Data Science Code Generation
- Authors: Shuyin Ouyang, Dong Huang, Jingwen Guo, Zeyu Sun, Qihao Zhu, Jie M. Zhang,
- Abstract summary: DSCodeBench is a new benchmark designed to evaluate large language models (LLMs) on complicated and realistic data science code generation tasks.<n>It consists of 1,000 carefully constructed problems sourced from GitHub across ten widely used Python data science libraries.<n>Compared to the current state-of-the-art benchmark DS-1000, DSCodeBench offers a more challenging and representative testbed.
- Score: 16.227266086218425
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We introduce DSCodeBench, a new benchmark designed to evaluate large language models (LLMs) on complicated and realistic data science code generation tasks. DSCodeBench consists of 1,000 carefully constructed problems sourced from realistic problems from GitHub across ten widely used Python data science libraries. Compared to the current state-of-the-art benchmark DS-1000, DSCodeBench offers a more challenging and representative testbed, longer code solutions, more comprehensive data science libraries, clearer and better structured problem descriptions, and stronger test suites. To construct the DSCodeBench, we develop a robust pipeline that combines task scope selection, code construction, test case generation, and problem description synthesis. The process is paired with rigorous manual editing to ensure alignment and enhance evaluation reliability. Experimental result shows that DSCodeBench exhibits robust scaling behavior, where larger models systematically outperform smaller ones, validating its ability to distinguish model capabilities. The best LLM we test, GPT-4o, has a pass@1 of 0.202, indicating that LLMs still have a large room to improve for realistic data science code generation tasks. We believe DSCodeBench will serve as a rigorous and trustworthy foundation for advancing LLM-based data science programming.
Related papers
- OpenCodeInstruct: A Large-scale Instruction Tuning Dataset for Code LLMs [62.68905180014956]
We introduce OpenCodeInstruct, the largest open-access instruction tuning dataset, comprising 5 million diverse samples.<n>Each sample includes a programming question, solution, test cases, execution feedback, and LLM-generated quality assessments.<n>We fine-tune various base models, including LLaMA and Qwen, across multiple scales (1B+, 3B+, and 7B+) using our dataset.
arXiv Detail & Related papers (2025-04-05T02:52:16Z) - Why Stop at One Error? Benchmarking LLMs as Data Science Code Debuggers for Multi-Hop and Multi-Bug Errors [13.332407319448803]
We introduce the Data Science Benchmark, the first benchmark for systematic evaluation of LLMs on multi-hop error tracing and multi-bug detection.<n>DSDBench includes 1,117 annotated samples with 741 cause-effect error pairs and runtime error messages.<n> Evaluations of state-of-the-art LLMs on DSDBench show significant performance gaps.
arXiv Detail & Related papers (2025-03-28T12:46:54Z) - DynaCode: A Dynamic Complexity-Aware Code Benchmark for Evaluating Large Language Models in Code Generation [20.75363011870647]
DynaCode is a dynamic, complexity-aware benchmark for large language models (LLMs)<n>It evaluates LLMs systematically using a complexity-aware metric, incorporating both code complexity and call-graph structures.<n>Results on 12 latest LLMs show an average performance drop of 16.8% to 45.7% compared to MBPP+, a static code generation benchmark.
arXiv Detail & Related papers (2025-03-13T15:18:56Z) - KodCode: A Diverse, Challenging, and Verifiable Synthetic Dataset for Coding [49.56049319037421]
KodCode is a synthetic dataset that addresses the persistent challenge of acquiring high-quality, verifiable training data.<n>It comprises question-solution-test triplets that are systematically validated via a self-verification procedure.<n>This pipeline yields a large-scale, robust and diverse coding dataset.
arXiv Detail & Related papers (2025-03-04T19:17:36Z) - UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance [65.01483640267885]
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet code generation remains a major challenge.<n>We introduce UnitCoder, a systematic pipeline leveraging model-generated unit tests to guide and validate the code generation process.<n>Our work presents a scalable approach that leverages model-generated unit tests to guide the synthesis of high-quality code data from pre-training corpora.
arXiv Detail & Related papers (2025-02-17T05:37:02Z) - DA-Code: Agent Data Science Code Generation Benchmark for Large Language Models [36.266383541354294]
This benchmark features three core elements: First, the tasks within DA-Code are inherently challenging, setting them apart from traditional code generation tasks.
Second, examples in DA-Code are all based on real and diverse data, covering a wide range of complex data wrangling and analytics tasks.
Third, to solve the tasks, the models must utilize complex data science programming languages, to perform intricate data processing and derive the answers.
arXiv Detail & Related papers (2024-10-09T18:00:05Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
arXiv Detail & Related papers (2024-07-01T18:58:22Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - CoCoST: Automatic Complex Code Generation with Online Searching and Correctness Testing [51.00909683314142]
Large Language Models have revolutionized code generation ability by converting natural language descriptions into executable code.
CoCoST framework enhances complex code generation by online searching for more information with planned queries and correctness testing for code refinement.
CoCoST is validated through rigorous experiments on the DS-1000 and ClassEval datasets.
arXiv Detail & Related papers (2024-03-20T13:33:55Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBench is the first large-scale freeform question-answering (QA) benchmark for code to our knowledge.
It comprises 234 carefully selected high-quality Stack Overflow questions that span across 15 programming languages.
We conduct a systematic evaluation for over 100 latest code LLMs on InfiBench, leading to a series of novel and insightful findings.
arXiv Detail & Related papers (2024-03-11T02:06:30Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
We investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system.
We build a novel data-cleaning pipeline that uses these principles to transform existing programs.
We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B improves the performance by up to 30% compared to fine-tuning on the original dataset.
arXiv Detail & Related papers (2023-11-25T02:45:50Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Bench is a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks.
To evaluate both Large Language Models (LLMs) and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment.
arXiv Detail & Related papers (2023-11-16T12:03:21Z) - DS-1000: A Natural and Reliable Benchmark for Data Science Code
Generation [70.96868419971756]
DS-1000 is a code generation benchmark with a thousand data science problems spanning seven Python libraries.
First, our problems reflect diverse, realistic, and practical use cases since we collected them from StackOverflow.
Second, our automatic evaluation is highly specific (reliable) -- across all Codex-predicted solutions that our evaluation accept, only 1.8% of them are incorrect.
arXiv Detail & Related papers (2022-11-18T17:20:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.