Oral Imaging for Malocclusion Issues Assessments: OMNI Dataset, Deep Learning Baselines and Benchmarking
- URL: http://arxiv.org/abs/2505.15637v1
- Date: Wed, 21 May 2025 15:18:56 GMT
- Title: Oral Imaging for Malocclusion Issues Assessments: OMNI Dataset, Deep Learning Baselines and Benchmarking
- Authors: Pujun Xue, Junyi Ge, Xiaotong Jiang, Siyang Song, Zijian Wu, Yupeng Huo, Weicheng Xie, Linlin Shen, Xiaoqin Zhou, Xiaofeng Liu, Min Gu,
- Abstract summary: Malocclusion is a major challenge in orthodontics, and its complex presentation and diverse clinical manifestations make accurate localization and diagnosis important.<n>Currently, one of the major shortcomings facing the field of dental image analysis is the lack of large-scale, accurately labeled datasets dedicated to malocclusion issues.<n>We propose the Oral and Maxillofacial Natural Images (OMNI) dataset, a novel and comprehensive dental image dataset aimed at advancing the study of analyzing dental images for issues of malocclusion.
- Score: 31.518427146862646
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Malocclusion is a major challenge in orthodontics, and its complex presentation and diverse clinical manifestations make accurate localization and diagnosis particularly important. Currently, one of the major shortcomings facing the field of dental image analysis is the lack of large-scale, accurately labeled datasets dedicated to malocclusion issues, which limits the development of automated diagnostics in the field of dentistry and leads to a lack of diagnostic accuracy and efficiency in clinical practice. Therefore, in this study, we propose the Oral and Maxillofacial Natural Images (OMNI) dataset, a novel and comprehensive dental image dataset aimed at advancing the study of analyzing dental images for issues of malocclusion. Specifically, the dataset contains 4166 multi-view images with 384 participants in data collection and annotated by professional dentists. In addition, we performed a comprehensive validation of the created OMNI dataset, including three CNN-based methods, two Transformer-based methods, and one GNN-based method, and conducted automated diagnostic experiments for malocclusion issues. The experimental results show that the OMNI dataset can facilitate the automated diagnosis research of malocclusion issues and provide a new benchmark for the research in this field. Our OMNI dataset and baseline code are publicly available at https://github.com/RoundFaceJ/OMNI.
Related papers
- MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Semi-supervised classification of dental conditions in panoramic radiographs using large language model and instance segmentation: A real-world dataset evaluation [6.041146512190833]
A semi-supervised learning framework is proposed to classify thirteen dental conditions on panoramic radiographs.
The solution demonstrated an accuracy level comparable to that of a junior specialist.
arXiv Detail & Related papers (2024-06-25T19:56:12Z) - Exploring the Role of Convolutional Neural Networks (CNN) in Dental
Radiography Segmentation: A Comprehensive Systematic Literature Review [1.342834401139078]
This work demonstrates how Convolutional Neural Networks (CNNs) can be employed to analyze images, serving as effective tools for detecting dental pathologies.
CNNs utilized for segmenting and categorizing teeth exhibited their highest level of performance overall.
arXiv Detail & Related papers (2024-01-17T13:00:57Z) - DENTEX: An Abnormal Tooth Detection with Dental Enumeration and
Diagnosis Benchmark for Panoramic X-rays [0.3355353735901314]
The Dentalion and Diagnosis on Panoramic X-rays Challenge (DENTEX) has been organized in association with the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) in 2023.
We present the results of evaluating participant algorithms on the fully annotated data.
The provision of this annotated dataset, alongside the results of this challenge, may lay the groundwork for the creation of AI-powered tools in the field of dentistry.
arXiv Detail & Related papers (2023-05-30T15:15:50Z) - MDF-Net for abnormality detection by fusing X-rays with clinical data [14.347359031598813]
This study investigates the effects of including patients' clinical information on the performance of deep learning (DL) classifiers for disease location in chest X-rays.
We propose a novel architecture consisting of two fusion methods that enable the model to simultaneously process patients' clinical data and chest X-rays.
Results show that incorporating patients' clinical data in a DL model together with the proposed fusion methods improves the disease localization in chest X-rays by 12% in terms of Average Precision.
arXiv Detail & Related papers (2023-02-26T19:16:57Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Learn to Ignore: Domain Adaptation for Multi-Site MRI Analysis [1.3079444139643956]
We present a novel method that learns to ignore the scanner-related features present in the images, while learning features relevant for the classification task.
Our method outperforms state-of-the-art domain adaptation methods on a classification task between Multiple Sclerosis patients and healthy subjects.
arXiv Detail & Related papers (2021-10-13T15:40:50Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.