Soft Thinking: Unlocking the Reasoning Potential of LLMs in Continuous Concept Space
- URL: http://arxiv.org/abs/2505.15778v1
- Date: Wed, 21 May 2025 17:29:15 GMT
- Title: Soft Thinking: Unlocking the Reasoning Potential of LLMs in Continuous Concept Space
- Authors: Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen, Xin Eric Wang,
- Abstract summary: We introduce Soft Thinking, a training-free method that emulates human-like "soft" reasoning by generating soft, abstract concept tokens.<n>These concept tokens are created by the probability-weighted mixture of token embeddings, which form the continuous concept space.<n>In essence, each generated concept token encapsulates multiple meanings from related discrete tokens, implicitly exploring various reasoning paths to converge.
- Score: 62.54887038032942
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human cognition typically involves thinking through abstract, fluid concepts rather than strictly using discrete linguistic tokens. Current reasoning models, however, are constrained to reasoning within the boundaries of human language, processing discrete token embeddings that represent fixed points in the semantic space. This discrete constraint restricts the expressive power and upper potential of such reasoning models, often causing incomplete exploration of reasoning paths, as standard Chain-of-Thought (CoT) methods rely on sampling one token per step. In this work, we introduce Soft Thinking, a training-free method that emulates human-like "soft" reasoning by generating soft, abstract concept tokens in a continuous concept space. These concept tokens are created by the probability-weighted mixture of token embeddings, which form the continuous concept space, enabling smooth transitions and richer representations that transcend traditional discrete boundaries. In essence, each generated concept token encapsulates multiple meanings from related discrete tokens, implicitly exploring various reasoning paths to converge effectively toward the correct answer. Empirical evaluations on diverse mathematical and coding benchmarks consistently demonstrate the effectiveness and efficiency of Soft Thinking, improving pass@1 accuracy by up to 2.48 points while simultaneously reducing token usage by up to 22.4% compared to standard CoT. Qualitative analysis further reveals that Soft Thinking outputs remain highly interpretable and readable, highlighting the potential of Soft Thinking to break the inherent bottleneck of discrete language-based reasoning. Code is available at https://github.com/eric-ai-lab/Soft-Thinking.
Related papers
- LLMs are Single-threaded Reasoners: Demystifying the Working Mechanism of Soft Thinking [21.221368900834854]
This paper explores the capabilities of large language models (LLMs) to generate soft, abstract tokens.<n>Contrary to common belief, our findings reveal that LLMs predominantly rely on the most influential component of the soft inputs during subsequent decoding steps.<n>To tackle this issue, we explore sampling strategies to introduce emphrandomness, employing methods such as Dirichlet resampling and the Gumbel-Softmax trick.
arXiv Detail & Related papers (2025-08-05T13:38:33Z) - A Survey on Latent Reasoning [100.54120559169735]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities.<n>CoT reasoning that verbalizes intermediate steps limits the model's expressive bandwidth.<n>Latent reasoning tackles this bottleneck by performing multi-step inference entirely in the model's continuous hidden state.
arXiv Detail & Related papers (2025-07-08T17:29:07Z) - Theorem-of-Thought: A Multi-Agent Framework for Abductive, Deductive, and Inductive Reasoning in Language Models [2.172419551358714]
Large language models (LLMs) have shown strong performance across natural language reasoning tasks, yet their reasoning processes remain brittle and difficult to interpret.<n>We introduce Theorem-of-Thought (ToTh), a novel framework that models reasoning as collaboration among three parallel agents.<n> Experiments on symbolic (WebOfLies) and numerical (MultiArithm) reasoning benchmarks show that ToTh consistently outperforms CoT, Self-Consistency, and CoT-Decoding.
arXiv Detail & Related papers (2025-06-08T12:28:38Z) - I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data? [76.15163242945813]
Large language models (LLMs) have led many to conclude that they exhibit a form of intelligence.<n>We introduce a novel generative model that generates tokens on the basis of human-interpretable concepts represented as latent discrete variables.
arXiv Detail & Related papers (2025-03-12T01:21:17Z) - Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching [60.04718679054704]
Chain-of-Thought prompting elicits step-by-step problem solving, but often at the cost of excessive verbosity in intermediate outputs.<n>We propose Sketch-of-Thought (SoT), a prompting framework that integrates cognitively inspired reasoning paradigms with linguistic constraints.<n>SoT achieves token reductions of up to 78% with minimal accuracy loss across 15 reasoning datasets.
arXiv Detail & Related papers (2025-03-07T06:57:17Z) - Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning [44.84219266082269]
Large Language Models (LLMs) excel at reasoning and planning when trained on chainof-thought (CoT) data.<n>We propose a hybrid representation of the reasoning process, where we partially abstract away the initial reasoning steps using latent discrete tokens.
arXiv Detail & Related papers (2025-02-05T15:33:00Z) - Training Large Language Models to Reason in a Continuous Latent Space [84.5618790930725]
We introduce a new paradigm Coconut (Chain of Continuous Thought) to explore the potential of large language models (LLMs) reasoning in an unrestricted latent space.<n>Experiments show that Coconut can effectively augment the LLM on several reasoning tasks.<n>These findings demonstrate the promise of latent reasoning and offer valuable insights for future research.
arXiv Detail & Related papers (2024-12-09T18:55:56Z) - Minding Language Models' (Lack of) Theory of Mind: A Plug-and-Play
Multi-Character Belief Tracker [72.09076317574238]
ToM is a plug-and-play approach to investigate the belief states of characters in reading comprehension.
We show that ToM enhances off-the-shelf neural network theory mind in a zero-order setting while showing robust out-of-distribution performance compared to supervised baselines.
arXiv Detail & Related papers (2023-06-01T17:24:35Z) - Paraconsistent Foundations for Probabilistic Reasoning, Programming and
Concept Formation [0.0]
It is argued that 4-valued paraconsistent truth values (called here "p-bits") can serve as a conceptual, mathematical and practical foundation for highly AI-relevant forms of probabilistic logic and programming and concept formation.
It is shown that appropriate averaging-across-situations and renormalization of 4-valued p-bits operating in accordance with Constructible Duality (CD) logic yields PLN (Probabilistic Logic Networks) strength-and-confidence truth values.
arXiv Detail & Related papers (2020-12-28T20:14:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.