Theorem-of-Thought: A Multi-Agent Framework for Abductive, Deductive, and Inductive Reasoning in Language Models
- URL: http://arxiv.org/abs/2506.07106v2
- Date: Thu, 31 Jul 2025 09:33:35 GMT
- Title: Theorem-of-Thought: A Multi-Agent Framework for Abductive, Deductive, and Inductive Reasoning in Language Models
- Authors: Samir Abdaljalil, Hasan Kurban, Khalid Qaraqe, Erchin Serpedin,
- Abstract summary: Large language models (LLMs) have shown strong performance across natural language reasoning tasks, yet their reasoning processes remain brittle and difficult to interpret.<n>We introduce Theorem-of-Thought (ToTh), a novel framework that models reasoning as collaboration among three parallel agents.<n> Experiments on symbolic (WebOfLies) and numerical (MultiArithm) reasoning benchmarks show that ToTh consistently outperforms CoT, Self-Consistency, and CoT-Decoding.
- Score: 2.172419551358714
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown strong performance across natural language reasoning tasks, yet their reasoning processes remain brittle and difficult to interpret. Prompting techniques like Chain-of-Thought (CoT) enhance reliability by eliciting intermediate reasoning steps or aggregating multiple outputs. However, they lack mechanisms for enforcing logical structure and assessing internal coherence. We introduce Theorem-of-Thought (ToTh), a novel framework that models reasoning as collaboration among three parallel agents, each simulating a distinct mode of inference: abductive, deductive, and inductive. Each agent produces a reasoning trace, which is structured into a formal reasoning graph. To evaluate consistency, we apply Bayesian belief propagation guided by natural language inference (NLI), assigning confidence scores to each step. The most coherent graph is selected to derive the final answer. Experiments on symbolic (WebOfLies) and numerical (MultiArith) reasoning benchmarks show that ToTh consistently outperforms CoT, Self-Consistency, and CoT-Decoding across multiple LLMs, while producing interpretable and logically grounded reasoning chains. Our findings suggest a promising direction for building more robust and cognitively inspired LLM reasoning. The implementation is available at https://github.com/KurbanIntelligenceLab/theorem-of-thought.
Related papers
- A Survey on Latent Reasoning [100.54120559169735]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities.<n>CoT reasoning that verbalizes intermediate steps limits the model's expressive bandwidth.<n>Latent reasoning tackles this bottleneck by performing multi-step inference entirely in the model's continuous hidden state.
arXiv Detail & Related papers (2025-07-08T17:29:07Z) - Reasoning Beyond Language: A Comprehensive Survey on Latent Chain-of-Thought Reasoning [21.444049407715955]
Large Language Models (LLMs) have achieved impressive performance on complex reasoning tasks with Chain-of-Thought (CoT) prompting.<n>There has been growing research interest in latent CoT reasoning, where inference occurs within latent spaces.<n>This paper presents a comprehensive overview and analysis of this reasoning paradigm.
arXiv Detail & Related papers (2025-05-22T15:26:51Z) - On the Diagram of Thought [12.304069891580658]
Current large language models (LLMs) demonstrate impressive capabilities but struggle with complex, multi-step reasoning tasks.<n>We introduce the Diagram of Thought (DoT) as a framework wherein a single auto-regressive LLM internally constructs and navigates a Directed Acyclic Graph (DAG)<n>We formalize the reasoning DAG as a diagram within a suitable topos and prove that the final step, aggregating validated information, corresponds semantically to computing the colimit of the relevant sub-diagram.
arXiv Detail & Related papers (2024-09-16T07:01:41Z) - Neuro-Symbolic Integration Brings Causal and Reliable Reasoning Proofs [95.07757789781213]
Two lines of approaches are adopted for complex reasoning with LLMs.<n>One line of work prompts LLMs with various reasoning structures, while the structural outputs can be naturally regarded as intermediate reasoning steps.<n>The other line of work adopt LLM-free declarative solvers to do the reasoning task, rendering higher reasoning accuracy but lacking interpretability due to the black-box nature of the solvers.<n>We present a simple extension to the latter line of work. Specifically, we showcase that the intermediate search logs generated by Prolog interpreters can be accessed and interpreted into human-readable reasoning.
arXiv Detail & Related papers (2023-11-16T11:26:21Z) - Are LLMs Rigorous Logical Reasoner? Empowering Natural Language Proof Generation with Contrastive Stepwise Decoding [10.421832675327712]
We introduce contrastive decoding to stepwise proof generation, making use of negative reasoning paths to strengthen the model's capacity for logical deduction.<n> Experiments on EntailmentBank underscore the success of our method in augmenting the proof planning abilities of language models.
arXiv Detail & Related papers (2023-11-12T05:12:49Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
Logical reasoning is an important task for artificial intelligence with potential impacts on science, mathematics, and society.
In this work, we reformulating such tasks as modular neurosymbolic programming, which we call LINC.
We observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate.
arXiv Detail & Related papers (2023-10-23T17:58:40Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z) - Multimodal Chain-of-Thought Reasoning in Language Models [94.70184390935661]
We propose Multimodal-CoT that incorporates language (text) and vision (images) modalities into a two-stage framework.
Experimental results on ScienceQA and A-OKVQA benchmark datasets show the effectiveness of our proposed approach.
arXiv Detail & Related papers (2023-02-02T07:51:19Z) - Towards Understanding Chain-of-Thought Prompting: An Empirical Study of
What Matters [82.84696222087396]
Chain-of-Thought (CoT) prompting can dramatically improve the multi-step reasoning abilities of large language models (LLMs)
We show that CoT reasoning is possible even with invalid demonstrations.
arXiv Detail & Related papers (2022-12-20T05:20:54Z) - Language Models Are Greedy Reasoners: A Systematic Formal Analysis of
Chain-of-Thought [10.524051272257614]
Large language models (LLMs) have shown remarkable reasoning capabilities given chain-of-thought prompts.
We present a new synthetic question-answering dataset called PrOntoQA, where each example is generated as a synthetic world model.
This allows us to parse the generated chain-of-thought into symbolic proofs for formal analysis.
arXiv Detail & Related papers (2022-10-03T21:34:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.