A Deep Learning Framework for Two-Dimensional, Multi-Frequency Propagation Factor Estimation
- URL: http://arxiv.org/abs/2505.15802v1
- Date: Wed, 21 May 2025 17:56:02 GMT
- Title: A Deep Learning Framework for Two-Dimensional, Multi-Frequency Propagation Factor Estimation
- Authors: Sarah E. Wessinger, Leslie N. Smith, Jacob Gull, Jonathan Gehman, Zachary Beever, Andrew J. Kammerer,
- Abstract summary: This communication explores a novel approach using deep neural networks to estimate the pattern propagation factor.<n>Deep neural networks can be trained to analyze multiple frequencies and reasonably predict the pattern propagation factor.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately estimating the refractive environment over multiple frequencies within the marine atmospheric boundary layer is crucial for the effective deployment of radar technologies. Traditional parabolic equation simulations, while effective, can be computationally expensive and time-intensive, limiting their practical application. This communication explores a novel approach using deep neural networks to estimate the pattern propagation factor, a critical parameter for characterizing environmental impacts on signal propagation. Image-to-image translation generators designed to ingest modified refractivity data and generate predictions of pattern propagation factors over the same domain were developed. Findings demonstrate that deep neural networks can be trained to analyze multiple frequencies and reasonably predict the pattern propagation factor, offering an alternative to traditional methods.
Related papers
- Resource-Efficient Beam Prediction in mmWave Communications with Multimodal Realistic Simulation Framework [57.994965436344195]
Beamforming is a key technology in millimeter-wave (mmWave) communications that improves signal transmission by optimizing directionality and intensity.<n> multimodal sensing-aided beam prediction has gained significant attention, using various sensing data to predict user locations or network conditions.<n>Despite its promising potential, the adoption of multimodal sensing-aided beam prediction is hindered by high computational complexity, high costs, and limited datasets.
arXiv Detail & Related papers (2025-04-07T15:38:25Z) - Mapping The Layers of The Ocean Floor With a Convolutional Neural Network [0.0]
Existing solution methods involve mapping through seismic methods and wave inversion, which are complex and computationally expensive.<n>The introduction of artificial neural networks, specifically UNet, to predict velocity models based on seismic shots reflected from the ocean floor shows promise for optimising this process.
arXiv Detail & Related papers (2024-12-04T15:26:48Z) - Multi-scale Generative Modeling for Fast Sampling [38.570968785490514]
In the wavelet domain, we encounter unique challenges, especially the sparse representation of high-frequency coefficients.
We propose a multi-scale generative modeling in the wavelet domain that employs distinct strategies for handling low and high-frequency bands.
As supported by the theoretical analysis and experimental results, our model significantly improve performance and reduce the number of trainable parameters, sampling steps, and time.
arXiv Detail & Related papers (2024-11-14T11:01:45Z) - Continuous Field Reconstruction from Sparse Observations with Implicit
Neural Networks [11.139052252214917]
This work presents a novel approach that learns a continuous representation of a physical field using implicit neural representations.
In experimental evaluations, the proposed model outperforms recent INR methods.
arXiv Detail & Related papers (2024-01-21T22:18:29Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
We propose a novel approach for phase-resolved wave surface reconstruction using neural networks.
Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids.
arXiv Detail & Related papers (2023-05-18T12:30:26Z) - A stable deep adversarial learning approach for geological facies
generation [32.97208255533144]
Deep generative learning is a promising approach to overcome the limitations of traditional geostatistical simulation models.
This research aims to investigate the application of generative adversarial networks and deep variational inference for conditionally meandering channels in underground volumes.
arXiv Detail & Related papers (2023-05-12T14:21:14Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Deep Injective Prior for Inverse Scattering [16.36016615416872]
In electromagnetic inverse scattering, the goal is to reconstruct object permittivity using scattered waves.
Deep learning has shown promise as an alternative to iterative solvers.
We propose a data-driven framework for inverse scattering based on deep generative models.
arXiv Detail & Related papers (2023-01-08T19:05:51Z) - Deep Impulse Responses: Estimating and Parameterizing Filters with Deep
Networks [76.830358429947]
Impulse response estimation in high noise and in-the-wild settings is a challenging problem.
We propose a novel framework for parameterizing and estimating impulse responses based on recent advances in neural representation learning.
arXiv Detail & Related papers (2022-02-07T18:57:23Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - A Variational Bayesian Approach to Learning Latent Variables for
Acoustic Knowledge Transfer [55.20627066525205]
We propose a variational Bayesian (VB) approach to learning distributions of latent variables in deep neural network (DNN) models.
Our proposed VB approach can obtain good improvements on target devices, and consistently outperforms 13 state-of-the-art knowledge transfer algorithms.
arXiv Detail & Related papers (2021-10-16T15:54:01Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Gravitational-wave selection effects using neural-network classifiers [0.0]
We train a series of neural-network classifiers to predict the LIGO/Virgo detectability of gravitational-wave signals from compact-binary mergers.
We include the effect of spin precession, higher-order modes, and multiple detectors.
Our approach is ready to be used in conjunction with full pipeline injections, thus paving the way toward including actual distributions of astrophysical and noise triggers into gravitational-wave population analyses.
arXiv Detail & Related papers (2020-07-13T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.