Meta-Learning an In-Context Transformer Model of Human Higher Visual Cortex
- URL: http://arxiv.org/abs/2505.15813v1
- Date: Wed, 21 May 2025 17:59:41 GMT
- Title: Meta-Learning an In-Context Transformer Model of Human Higher Visual Cortex
- Authors: Muquan Yu, Mu Nan, Hossein Adeli, Jacob S. Prince, John A. Pyles, Leila Wehbe, Margaret M. Henderson, Michael J. Tarr, Andrew F. Luo,
- Abstract summary: BraInCoRL uses in-context learning to predict voxelwise neural responses from few-shot examples.<n>We show that BraInCoRL consistently outperforms existing voxelwise encoder designs in a low-data regime.<n>BraInCoRL facilitates better interpretability of neural signals in higher visual cortex by attending to semantically relevant stimuli.
- Score: 5.283925904540581
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding functional representations within higher visual cortex is a fundamental question in computational neuroscience. While artificial neural networks pretrained on large-scale datasets exhibit striking representational alignment with human neural responses, learning image-computable models of visual cortex relies on individual-level, large-scale fMRI datasets. The necessity for expensive, time-intensive, and often impractical data acquisition limits the generalizability of encoders to new subjects and stimuli. BraInCoRL uses in-context learning to predict voxelwise neural responses from few-shot examples without any additional finetuning for novel subjects and stimuli. We leverage a transformer architecture that can flexibly condition on a variable number of in-context image stimuli, learning an inductive bias over multiple subjects. During training, we explicitly optimize the model for in-context learning. By jointly conditioning on image features and voxel activations, our model learns to directly generate better performing voxelwise models of higher visual cortex. We demonstrate that BraInCoRL consistently outperforms existing voxelwise encoder designs in a low-data regime when evaluated on entirely novel images, while also exhibiting strong test-time scaling behavior. The model also generalizes to an entirely new visual fMRI dataset, which uses different subjects and fMRI data acquisition parameters. Further, BraInCoRL facilitates better interpretability of neural signals in higher visual cortex by attending to semantically relevant stimuli. Finally, we show that our framework enables interpretable mappings from natural language queries to voxel selectivity.
Related papers
- Probing Multimodal Fusion in the Brain: The Dominance of Audiovisual Streams in Naturalistic Encoding [1.2233362977312945]
We develop brain encoding models using state-of-the-art visual (X-CLIP) and auditory (Whisper) feature extractors.<n>We rigorously evaluate them on both in-distribution (ID) and diverse out-of-distribution (OOD) data.
arXiv Detail & Related papers (2025-07-25T08:12:26Z) - Sparse Autoencoders Bridge The Deep Learning Model and The Brain [18.058358411706052]
We present SAE-BrainMap, a novel framework that aligns deep learning visual model representations with voxel-level fMRI responses.<n>It is found that ViT-B/16$_CLIP$ tends to utilize low-level information to generate high-level semantic information in the early layers.<n>Our results establish a direct, downstream-task-free bridge between deep neural networks and human visual cortex, offering new insights into model interpretability.
arXiv Detail & Related papers (2025-06-10T06:35:14Z) - See Through Their Minds: Learning Transferable Neural Representation from Cross-Subject fMRI [32.40827290083577]
Deciphering visual content from functional Magnetic Resonance Imaging (fMRI) helps illuminate the human vision system.
Previous approaches primarily employ subject-specific models, sensitive to training sample size.
We propose shallow subject-specific adapters to map cross-subject fMRI data into unified representations.
During training, we leverage both visual and textual supervision for multi-modal brain decoding.
arXiv Detail & Related papers (2024-03-11T01:18:49Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
Neuromorphic computing relies on spike-based, energy-efficient communication.
We develop a tool to identify suitable configurations for neuron-based encoding of sample-based data into spike trains.
The WaLiN-GUI is provided open source and with documentation.
arXiv Detail & Related papers (2023-10-25T20:34:08Z) - Unidirectional brain-computer interface: Artificial neural network
encoding natural images to fMRI response in the visual cortex [12.1427193917406]
We propose an artificial neural network dubbed VISION to mimic the human brain and show how it can foster neuroscientific inquiries.
VISION successfully predicts human hemodynamic responses as fMRI voxel values to visual inputs with an accuracy exceeding state-of-the-art performance by 45%.
arXiv Detail & Related papers (2023-09-26T15:38:26Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
Neural abstractions have been recently introduced as formal approximations of complex, nonlinear dynamical models.
We employ formal inductive synthesis procedures to generate neural abstractions that result in dynamical models with these semantics.
arXiv Detail & Related papers (2023-07-28T13:22:32Z) - Top-down inference in an early visual cortex inspired hierarchical
Variational Autoencoder [0.0]
We exploit advances in Variational Autoencoders to investigate the early visual cortex with sparse coding hierarchical VAEs trained on natural images.
We show that representations similar to the one found in the primary and secondary visual cortices naturally emerge under mild inductive biases.
We show that a neuroscience-inspired choice of the recognition model is critical for two signatures of computations with generative models.
arXiv Detail & Related papers (2022-06-01T12:21:58Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Evaluating deep transfer learning for whole-brain cognitive decoding [11.898286908882561]
Transfer learning (TL) is well-suited to improve the performance of deep learning (DL) models in datasets with small numbers of samples.
Here, we evaluate TL for the application of DL models to the decoding of cognitive states from whole-brain functional Magnetic Resonance Imaging (fMRI) data.
arXiv Detail & Related papers (2021-11-01T15:44:49Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.