On Dequantization of Supervised Quantum Machine Learning via Random Fourier Features
- URL: http://arxiv.org/abs/2505.15902v2
- Date: Mon, 26 May 2025 16:24:23 GMT
- Title: On Dequantization of Supervised Quantum Machine Learning via Random Fourier Features
- Authors: Mehrad Sahebi, Alice Barthe, Yudai Suzuki, Zoƫ Holmes, Michele Grossi,
- Abstract summary: We derive bounds on the generalization performance gap between classical RFF models and quantum models for regression and classification tasks.<n>Our findings not only broaden the applicability of RFF-based dequantization but also enhance the understanding of potential quantum advantages in practical machine-learning tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the quest for quantum advantage, a central question is under what conditions can classical algorithms achieve a performance comparable to quantum algorithms--a concept known as dequantization. Random Fourier features (RFFs) have demonstrated potential for dequantizing certain quantum neural networks (QNNs) applied to regression tasks, but their applicability to other learning problems and architectures remains unexplored. In this work, we derive bounds on the generalization performance gap between classical RFF models and quantum models for regression and classification tasks with both QNN and quantum kernel architectures. We support our findings with numerical experiments that illustrate the practical dequantization of existing quantum kernel-based methods. Our findings not only broaden the applicability of RFF-based dequantization but also enhance the understanding of potential quantum advantages in practical machine-learning tasks.
Related papers
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Quantum advantage for learning shallow neural networks with natural data distributions [4.363673971859799]
We study an efficient quantum algorithm for learning periodic neurons in the QSQ model over a broad range of non-uniform distributions.<n>To our knowledge, our work is the first result in quantum learning theory for classical functions that explicitly considers real-valued functions.
arXiv Detail & Related papers (2025-03-26T18:00:17Z) - The Impact of Architecture and Cost Function on Dissipative Quantum Neural Networks [0.016385815610837167]
We present a novel architecture for dissipative quantum neural networks (DQNNs) in which each building block can implement any quantum channel.<n>We derive a versatile one-to-one parametrization of isometries, allowing for an efficient implementation of the proposed structure.
arXiv Detail & Related papers (2025-02-13T17:38:48Z) - Comprehensive Survey of QML: From Data Analysis to Algorithmic Advancements [2.5686697584463025]
Quantum Machine Learning represents a paradigm shift at the intersection of Quantum Computing and Machine Learning.<n>The field faces significant challenges, including hardware constraints, noise, and limited qubit coherence.<n>This survey aims to provide a foundational resource for advancing Quantum Machine Learning toward practical, real-world applications.
arXiv Detail & Related papers (2025-01-16T13:25:49Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
We explore the synergistic fusion of classical and quantum computing paradigms within the realm of Generative Adversarial Networks (GANs)
Our objective is to seamlessly integrate quantum computational elements into the conventional GAN architecture, thereby unlocking novel pathways for enhanced training processes.
This research is positioned at the forefront of quantum-enhanced machine learning, presenting a critical stride towards harnessing the computational power of quantum systems.
arXiv Detail & Related papers (2023-12-15T16:51:36Z) - Classical Verification of Quantum Learning [42.362388367152256]
We develop a framework for classical verification of quantum learning.
We propose a new quantum data access model that we call "mixture-of-superpositions" quantum examples.
Our results demonstrate that the potential power of quantum data for learning tasks, while not unlimited, can be utilized by classical agents.
arXiv Detail & Related papers (2023-06-08T00:31:27Z) - Quantum Deep Hedging [10.243020478772056]
We look at the problem of hedging where deep reinforcement learning offers a powerful framework for real markets.
We develop quantum reinforcement learning methods based on policy-search and distributional actor-critic algorithms.
We successfully implement the proposed models on a trapped-ion quantum processor.
arXiv Detail & Related papers (2023-03-29T10:42:50Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.