Diffusion Probabilistic Generative Models for Accelerated, in-NICU Permanent Magnet Neonatal MRI
- URL: http://arxiv.org/abs/2505.15984v1
- Date: Wed, 21 May 2025 20:05:45 GMT
- Title: Diffusion Probabilistic Generative Models for Accelerated, in-NICU Permanent Magnet Neonatal MRI
- Authors: Yamin Arefeen, Brett Levac, Bhairav Patel, Chang Ho, Jonathan I. Tamir,
- Abstract summary: Permanent magnet scanners operating in the neonatal intensive care unit (NICU) facilitate MRI of sick infants.<n>These scanners have long scan times due to lower signal-to-noise ratios (SNR) and limited receive coils.<n>This work accelerates in-NICU MRI with diffusion probabilistic generative models by developing a training pipeline.
- Score: 2.1400895396229913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: Magnetic Resonance Imaging (MRI) enables non-invasive assessment of brain abnormalities during early life development. Permanent magnet scanners operating in the neonatal intensive care unit (NICU) facilitate MRI of sick infants, but have long scan times due to lower signal-to-noise ratios (SNR) and limited receive coils. This work accelerates in-NICU MRI with diffusion probabilistic generative models by developing a training pipeline accounting for these challenges. Methods: We establish a novel training dataset of clinical, 1 Tesla neonatal MR images in collaboration with Aspect Imaging and Sha'are Zedek Medical Center. We propose a pipeline to handle the low quantity and SNR of our real-world dataset (1) modifying existing network architectures to support varying resolutions; (2) training a single model on all data with learned class embedding vectors; (3) applying self-supervised denoising before training; and (4) reconstructing by averaging posterior samples. Retrospective under-sampling experiments, accounting for signal decay, evaluated each item of our proposed methodology. A clinical reader study with practicing pediatric neuroradiologists evaluated our proposed images reconstructed from 1.5x under-sampled data. Results: Combining all data, denoising pre-training, and averaging posterior samples yields quantitative improvements in reconstruction. The generative model decouples the learned prior from the measurement model and functions at two acceleration rates without re-training. The reader study suggests that proposed images reconstructed from approximately 1.5x under-sampled data are adequate for clinical use. Conclusion: Diffusion probabilistic generative models applied with the proposed pipeline to handle challenging real-world datasets could reduce scan time of in-NICU neonatal MRI.
Related papers
- Towards a general-purpose foundation model for fMRI analysis [58.06455456423138]
We introduce NeuroSTORM, a framework that learns from 4D fMRI volumes and enables efficient knowledge transfer across diverse applications.<n>NeuroSTORM is pre-trained on 28.65 million fMRI frames (>9,000 hours) from over 50,000 subjects across multiple centers and ages 5 to 100.<n>It outperforms existing methods across five tasks: age/gender prediction, phenotype prediction, disease diagnosis, fMRI-to-image retrieval, and task-based fMRI.
arXiv Detail & Related papers (2025-06-11T23:51:01Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.<n>We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - A Generative Diffusion Model to Solve Inverse Problems for Robust in-NICU Neonatal MRI [2.508200203858861]
We present the first acquisition-agnostic diffusion generative model for Magnetic Resonance Imaging (MRI) in the neonatal intensive care unit (NICU)<n>In-NICU MRI scanners leverage permanent magnets at lower field-strengths for non-invasive assessment of potential brain abnormalities.<n>In this setting, training data sizes are small and intrinsically suffer from low signal-to-noise ratio (SNR)
arXiv Detail & Related papers (2024-10-28T23:12:09Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
We propose a unified MRI reconstruction model robust to various measurement undersampling patterns and image resolutions.<n>Our model improves SSIM by 11% and PSNR by 4 dB over a state-of-the-art CNN (End-to-End VarNet) with 600$times$ faster inference than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Generative AI for Rapid Diffusion MRI with Improved Image Quality,
Reliability and Generalizability [3.6119644566822484]
We employ a Swin UNEt Transformers model, trained on augmented Human Connectome Project data, to perform generalized denoising of dMRI.
We demonstrate super-resolution with artificially downsampled HCP data in normal adult volunteers.
We exceed current state-of-the-art denoising methods in accuracy and test-retest reliability of rapid diffusion tensor imaging requiring only 90 seconds of scan time.
arXiv Detail & Related papers (2023-03-10T03:39:23Z) - Dual-Domain Self-Supervised Learning for Accelerated Non-Cartesian MRI
Reconstruction [14.754843942604472]
We present a fully self-supervised approach for accelerated non-Cartesian MRI reconstruction.
In training, the undersampled data are split into disjoint k-space domain partitions.
For the image-level self-supervision, we enforce appearance consistency obtained from the original undersampled data.
arXiv Detail & Related papers (2023-02-18T06:11:49Z) - Physics-informed Deep Diffusion MRI Reconstruction with Synthetic Data: Break Training Data Bottleneck in Artificial Intelligence [31.25388976923081]
Diffusion magnetic resonance imaging (MRI) is the only imaging modality for non-invasive movement detection of inmagnitude water molecules.<n>DWI MRI acquired by multi-shot techniques can achieve higher resolution, better signal-to-noise ratio, and lower geometric distortion than single-shot.<n>These artifacts cannot be removed prospectively, leading to the absence of artifact-free training labels.<n>We propose a Physics-Informed Deep DWI reconstruction method to synthesize high-quality paired training data.
arXiv Detail & Related papers (2022-10-20T16:27:54Z) - A Path Towards Clinical Adaptation of Accelerated MRI [0.0]
We explore augmentations to neural network MRI image reconstructors to enhance their clinical relevancy.
We demonstrate that training reconstructors on MR signal data with variable acceleration factors can improve their average performance during a clinical patient scan by up to $2%$.
arXiv Detail & Related papers (2022-08-26T18:34:41Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.