論文の概要: An Approach Towards Identifying Bangladeshi Leaf Diseases through Transfer Learning and XAI
- arxiv url: http://arxiv.org/abs/2505.16033v1
- Date: Wed, 21 May 2025 21:25:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.918938
- Title: An Approach Towards Identifying Bangladeshi Leaf Diseases through Transfer Learning and XAI
- Title(参考訳): トランスファーラーニングとXAIによるバングラデシュの葉病の同定に向けて
- Authors: Faika Fairuj Preotee, Shuvashis Sarker, Shamim Rahim Refat, Tashreef Muhammad, Shifat Islam,
- Abstract要約: 本研究の目的は,深層学習モデルを用いて6植物に21の異なる葉病を分類することである。
VGG19とXceptionは、それぞれ98.90%と98.66%という高い精度を達成している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leaf diseases are harmful conditions that affect the health, appearance and productivity of plants, leading to significant plant loss and negatively impacting farmers' livelihoods. These diseases cause visible symptoms such as lesions, color changes, and texture variations, making it difficult for farmers to manage plant health, especially in large or remote farms where expert knowledge is limited. The main motivation of this study is to provide an efficient and accessible solution for identifying plant leaf diseases in Bangladesh, where agriculture plays a critical role in food security. The objective of our research is to classify 21 distinct leaf diseases across six plants using deep learning models, improving disease detection accuracy while reducing the need for expert involvement. Deep Learning (DL) techniques, including CNN and Transfer Learning (TL) models like VGG16, VGG19, MobileNetV2, InceptionV3, ResNet50V2 and Xception are used. VGG19 and Xception achieve the highest accuracies, with 98.90% and 98.66% respectively. Additionally, Explainable AI (XAI) techniques such as GradCAM, GradCAM++, LayerCAM, ScoreCAM and FasterScoreCAM are used to enhance transparency by highlighting the regions of the models focused on during disease classification. This transparency ensures that farmers can understand the model's predictions and take necessary action. This approach not only improves disease management but also supports farmers in making informed decisions, leading to better plant protection and increased agricultural productivity.
- Abstract(参考訳): 葉病は植物の健康、外観、生産性に影響を与える有害な疾患であり、植物が著しく失われ、農家の生活に悪影響を及ぼす。
これらの病気は、病変、色の変化、食感の変化などの目に見える症状を引き起こすため、農家が植物の健康管理を困難にしている。
本研究の主な動機は,バングラデシュで農業が食料安全保障において重要な役割を担っている植物葉病の同定に,効率的かつアクセス可能なソリューションを提供することである。
本研究の目的は、深層学習モデルを用いて、6つの植物で21の異なる葉病を分類し、専門家の関与を減らし、疾患検出精度を向上させることである。
CNNやVGG16、VGG19、MobileNetV2、InceptionV3、ResNet50V2、Xceptionといった深層学習(DL)技術が使用されている。
VGG19とXceptionは、それぞれ98.90%と98.66%という高い精度を達成している。
さらに、GradCAM、GradCAM++、LayerCAM、ScoreCAM、FasterScoreCAMといった説明可能なAI(XAI)技術は、疾患分類中に焦点を絞ったモデルの領域を強調することで透明性を高めるために使用される。
この透明性により、農家はモデルの予測を理解し、必要な行動を取ることができる。
このアプローチは、病気の管理を改善するだけでなく、農家のインフォームドな意思決定を支援し、植物保護の改善と農業生産性の向上につながっている。
関連論文リスト
- Agri-LLaVA: Knowledge-Infused Large Multimodal Assistant on Agricultural Pests and Diseases [49.782064512495495]
農業分野における最初のマルチモーダル・インストラクション・フォロー・データセットを構築した。
このデータセットは、約40万のデータエントリを持つ221種類以上の害虫と病気をカバーしている。
本稿では,農業用マルチモーダル対話システムであるAgri-LLaVAを開発するための知識注入型学習手法を提案する。
論文 参考訳(メタデータ) (2024-12-03T04:34:23Z) - Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - Artificial Immune System of Secure Face Recognition Against Adversarial Attacks [67.31542713498627]
昆虫生産には 最大限の可能性を実現するために 最適化が必要です
これは選択的育種による興味のある形質の改善が目的である。
このレビューは、様々な分野の知識と、動物の繁殖、定量的遺伝学、進化生物学、昆虫学のギャップを埋めるものである。
論文 参考訳(メタデータ) (2024-06-26T07:50:58Z) - Leaf-Based Plant Disease Detection and Explainable AI [16.128084819516715]
農業部門は国の経済成長に不可欠な役割を担っている。
植物病は農業に影響を及ぼす重要な要因の1つである。
研究者は、植物病を検出するAIと機械学習技術に基づく多くのアプリケーションを調査してきた。
論文 参考訳(メタデータ) (2023-12-17T03:40:12Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
我々は、AI技術がアグリフードシステムをどう変え、現代のアグリフード産業に貢献するかをレビューする。
本稿では,農業,畜産,漁業において,アグリフードシステムにおけるAI手法の進歩について概説する。
我々は、AIで現代のアグリフードシステムを変革するための潜在的な課題と有望な研究機会を強調します。
論文 参考訳(メタデータ) (2023-05-03T05:16:54Z) - Plant Disease Detection using Region-Based Convolutional Neural Network [2.5091819952713057]
農業はバングラデシュの食料と経済において重要な役割を担っている。
低作物生産の主な原因の1つは、多くの細菌、ウイルス、真菌の植物病である。
本稿では,トマトの葉病予測のための軽量深層学習モデルの構築を目的とする。
論文 参考訳(メタデータ) (2023-03-16T03:43:10Z) - Improved Neural Network based Plant Diseases Identification [0.0]
農業部門は、多くの人々や食料に基本的な収入を提供するため、すべての国にとって必須であり、この惑星で生き残るための基本的な要件である。
植物病の知識が不十分なため、農家は肥料を過剰に使用し、最終的に食物の品質を低下させる。
現段階では、画像処理は植物の葉の病変領域を識別し、カタログ化するために用いられる。
論文 参考訳(メタデータ) (2021-01-01T11:49:56Z) - A Deep Learning-based Detector for Brown Spot Disease in Passion Fruit
Plant Leaves [0.5485240256788552]
この研究は2つの主要な病気(ウイルス)と茶色の斑点(真菌)に焦点を当てている。
我々はウガンダ国立作物研究所(NaCRRI)と共同で、熱心にラベル付けされた果物の葉と果実のデータセットを開発しました。
論文 参考訳(メタデータ) (2020-07-28T10:17:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。