Few-Shot Test-Time Optimization Without Retraining for Semiconductor Recipe Generation and Beyond
- URL: http://arxiv.org/abs/2505.16060v1
- Date: Wed, 21 May 2025 22:24:23 GMT
- Title: Few-Shot Test-Time Optimization Without Retraining for Semiconductor Recipe Generation and Beyond
- Authors: Shangding Gu, Donghao Ying, Ming Jin, Yu Joe Lu, Jun Wang, Javad Lavaei, Costas Spanos,
- Abstract summary: We introduce Model Feedback Learning, a test-time optimization framework for optimizing inputs to pre-trained AI models or deployed hardware systems.<n>In contrast to existing methods that rely on adjusting model parameters, MFL leverages a lightweight reverse model to iteratively search for optimal inputs.<n>We validate MFL on semiconductor plasma etching tasks, where it achieves target recipe generation in just five iterations.
- Score: 18.560002264580447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Model Feedback Learning (MFL), a novel test-time optimization framework for optimizing inputs to pre-trained AI models or deployed hardware systems without requiring any retraining of the models or modifications to the hardware. In contrast to existing methods that rely on adjusting model parameters, MFL leverages a lightweight reverse model to iteratively search for optimal inputs, enabling efficient adaptation to new objectives under deployment constraints. This framework is particularly advantageous in real-world settings, such as semiconductor manufacturing recipe generation, where modifying deployed systems is often infeasible or cost-prohibitive. We validate MFL on semiconductor plasma etching tasks, where it achieves target recipe generation in just five iterations, significantly outperforming both Bayesian optimization and human experts. Beyond semiconductor applications, MFL also demonstrates strong performance in chemical processes (e.g., chemical vapor deposition) and electronic systems (e.g., wire bonding), highlighting its broad applicability. Additionally, MFL incorporates stability-aware optimization, enhancing robustness to process variations and surpassing conventional supervised learning and random search methods in high-dimensional control settings. By enabling few-shot adaptation, MFL provides a scalable and efficient paradigm for deploying intelligent control in real-world environments.
Related papers
- Intersection of Reinforcement Learning and Bayesian Optimization for Intelligent Control of Industrial Processes: A Safe MPC-based DPG using Multi-Objective BO [0.0]
Model Predictive Control (MPC)-based Reinforcement Learning (RL) offers a structured and interpretable alternative to Deep Neural Network (DNN)-based RL methods.<n>Standard MPC-RL approaches often suffer from slow convergence, suboptimal policy learning due to limited parameterization, and safety issues during online adaptation.<n>We propose a novel framework that integrates MPC-RL with Multi-Objective Bayesian Optimization (MOBO)
arXiv Detail & Related papers (2025-07-14T02:31:52Z) - Optimization-Inspired Few-Shot Adaptation for Large Language Models [25.439708260502556]
Large Language Models (LLMs) have demonstrated remarkable performance in real-world applications.<n>Adapting LLMs to novel tasks via fine-tuning often requires substantial training data and computational resources that are impractical in few-shot scenarios.<n>Existing approaches, such as in-context learning and.<n>Efficient Fine-Tuning (PEFT), face key limitations.
arXiv Detail & Related papers (2025-05-25T11:54:23Z) - Gen-DFL: Decision-Focused Generative Learning for Robust Decision Making [48.62706690668867]
Decision-focused generative learning (Gen-DFL) is a novel framework that leverages generative models to adaptively model uncertainty and improve decision quality.<n>The paper shows, theoretically, that Gen-DFL achieves improved worst-case performance bounds compared to traditional DFL.
arXiv Detail & Related papers (2025-02-08T06:52:11Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
We propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs.<n>We develop "BayesMulti", a training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections.<n>Our integrated approach enables use of analog computing in much deeper and wider networks, achieving up to 100-fold improvements.
arXiv Detail & Related papers (2024-12-03T19:20:08Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Model Extrapolation Expedites Alignment [135.12769233630362]
We propose a method called ExPO to expedite alignment training with human preferences.<n>We demonstrate that ExPO boosts a DPO model trained with only 20% steps to outperform the fully-trained one.<n>We show that ExPO notably improves existing open-source LLMs on the leading AlpacaEval 2.0 and MT-Bench benchmarks.
arXiv Detail & Related papers (2024-04-25T17:39:50Z) - PerfRL: A Small Language Model Framework for Efficient Code Optimization [14.18092813639534]
In this paper, we introduce PerfRL, an innovative framework designed to tackle the problem of code optimization.<n>Our framework leverages the capabilities of small language models (SLMs) and reinforcement learning (RL)<n>Our approach achieves similar or better results compared to state-of-the-art models using shorter training times and smaller pre-trained models.
arXiv Detail & Related papers (2023-12-09T19:50:23Z) - MFRL-BI: Design of a Model-free Reinforcement Learning Process Control
Scheme by Using Bayesian Inference [5.375049126954924]
Design of process control scheme is critical for quality assurance to reduce variations in manufacturing systems.
We propose a model-free reinforcement learning (MFRL) approach to conduct experiments and optimize control simultaneously according to real-time data.
arXiv Detail & Related papers (2023-09-17T08:18:55Z) - CATfOOD: Counterfactual Augmented Training for Improving Out-of-Domain
Performance and Calibration [59.48235003469116]
We show that data augmentation consistently enhances OOD performance.
We also show that CF augmented models which are easier to calibrate also exhibit much lower entropy when assigning importance.
arXiv Detail & Related papers (2023-09-14T16:16:40Z) - AnycostFL: Efficient On-Demand Federated Learning over Heterogeneous
Edge Devices [20.52519915112099]
We propose a cost-adjustable FL framework, named AnycostFL, that enables diverse edge devices to efficiently perform local updates.
Experiment results indicate that, our learning framework can reduce up to 1.9 times of the training latency and energy consumption for realizing a reasonable global testing accuracy.
arXiv Detail & Related papers (2023-01-08T15:25:55Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z) - Multi-level Training and Bayesian Optimization for Economical
Hyperparameter Optimization [12.92634461859467]
In this paper, we develop an effective approach to reducing the total amount of required training time for Hyperparameter Optimization.
We propose a truncated additive Gaussian process model to calibrate approximate performance measurements generated by light training.
Based on the model, a sequential model-based algorithm is developed to generate the performance profile of the configuration space as well as find optimal ones.
arXiv Detail & Related papers (2020-07-20T09:03:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.