Optimization-Inspired Few-Shot Adaptation for Large Language Models
- URL: http://arxiv.org/abs/2505.19107v1
- Date: Sun, 25 May 2025 11:54:23 GMT
- Title: Optimization-Inspired Few-Shot Adaptation for Large Language Models
- Authors: Boyan Gao, Xin Wang, Yibo Yang, David Clifton,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable performance in real-world applications.<n>Adapting LLMs to novel tasks via fine-tuning often requires substantial training data and computational resources that are impractical in few-shot scenarios.<n>Existing approaches, such as in-context learning and.<n>Efficient Fine-Tuning (PEFT), face key limitations.
- Score: 25.439708260502556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable performance in real-world applications. However, adapting LLMs to novel tasks via fine-tuning often requires substantial training data and computational resources that are impractical in few-shot scenarios. Existing approaches, such as in-context learning and Parameter-Efficient Fine-Tuning (PEFT), face key limitations: in-context learning introduces additional inference computational overhead with limited performance gains, while PEFT models are prone to overfitting on the few demonstration examples. In this work, we reinterpret the forward pass of LLMs as an optimization process, a sequence of preconditioned gradient descent steps refining internal representations. Based on this connection, we propose Optimization-Inspired Few-Shot Adaptation (OFA), integrating a parameterization that learns preconditioners without introducing additional trainable parameters, and an objective that improves optimization efficiency by learning preconditioners based on a convergence bound, while simultaneously steering the optimization path toward the flat local minimum. Our method overcomes both issues of ICL-based and PEFT-based methods, and demonstrates superior performance over the existing methods on a variety of few-shot adaptation tasks in experiments.
Related papers
- Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections [65.36449542323277]
We present a unified theoretical framework bridgingSupervised Fine-Tuning (SFT) and preference learning in Large Language Model (LLM) post-training.<n>We propose a simple yet effective learning rate reduction approach that yields significant performance improvements.
arXiv Detail & Related papers (2025-06-15T05:42:29Z) - Align-Pro: A Principled Approach to Prompt Optimization for LLM Alignment [40.71270945505082]
Large language models (LLMs) are increasingly integrated into various societal and decision-making processes.<n>Traditional methods, such as reinforcement learning from human feedback (RLHF), achieve alignment by fine-tuning model parameters.<n>In contrast, prompt optimization is a viable alternative to RLHF for LLM alignment.
arXiv Detail & Related papers (2025-01-07T03:14:39Z) - Plug-and-Play Training Framework for Preference Optimization [25.53286104242179]
We propose a novel training framework for large language models (LLMs)<n>This framework employs multiple sampling to analyze output distributions, assign different weights to samples, and incorporate these weights into the preference optimization process.<n> Experimental results demonstrate that our framework integrates seamlessly with various preference optimization methods and achieves consistent improvements in mathematical reasoning tasks.
arXiv Detail & Related papers (2024-12-30T15:01:48Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Parameter-Efficient Fine-Tuning With Adapters [5.948206235442328]
This research introduces a novel adaptation method utilizing the UniPELT framework as a base.
Our method employs adapters, which enable efficient transfer of pretrained models to new tasks with minimal retraining of the base model parameters.
arXiv Detail & Related papers (2024-05-09T01:40:38Z) - Model Extrapolation Expedites Alignment [135.12769233630362]
We propose a method called ExPO to expedite alignment training with human preferences.<n>We demonstrate that ExPO boosts a DPO model trained with only 20% steps to outperform the fully-trained one.<n>We show that ExPO notably improves existing open-source LLMs on the leading AlpacaEval 2.0 and MT-Bench benchmarks.
arXiv Detail & Related papers (2024-04-25T17:39:50Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
We introduce a technique to enhance the inference efficiency of parameter-shared language models.
We also propose a simple pre-training technique that leads to fully or partially shared models.
Results demonstrate the effectiveness of our methods on both autoregressive and autoencoding PLMs.
arXiv Detail & Related papers (2023-10-19T15:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.