論文の概要: MPL: Multiple Programming Languages with Large Language Models for Information Extraction
- arxiv url: http://arxiv.org/abs/2505.16107v1
- Date: Thu, 22 May 2025 01:28:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.961136
- Title: MPL: Multiple Programming Languages with Large Language Models for Information Extraction
- Title(参考訳): MPL:情報抽出のための大規模言語モデルを持つ多言語言語
- Authors: Bo Li, Gexiang Fang, Wei Ye, Zhenghua Xu, Jinglei Zhang, Hao Cheng, Shikun Zhang,
- Abstract要約: 本研究は,構造化出力生成を向上させるために,コードスタイルの入力を活用することに焦点を当てる。
PLは本質的に自然言語(NL)よりも構造的な構造を示す
教師付き微調整フェーズに異なるPLを組み込む可能性を探る新しいフレームワークである textbfMPL を提案する。
- 参考スコア(独自算出の注目度): 29.30183699980022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research in information extraction (IE) focuses on utilizing code-style inputs to enhance structured output generation. The intuition behind this is that the programming languages (PLs) inherently exhibit greater structural organization than natural languages (NLs). This structural advantage makes PLs particularly suited for IE tasks. Nevertheless, existing research primarily focuses on Python for code-style simulation, overlooking the potential of other widely-used PLs (e.g., C++ and Java) during the supervised fine-tuning (SFT) phase. In this research, we propose \textbf{M}ultiple \textbf{P}rogramming \textbf{L}anguages with large language models for information extraction (abbreviated as \textbf{MPL}), a novel framework that explores the potential of incorporating different PLs in the SFT phase. Additionally, we introduce \texttt{function-prompt} with virtual running to simulate code-style inputs more effectively and efficiently. Experimental results on a wide range of datasets demonstrate the effectiveness of MPL. Furthermore, we conduct extensive experiments to provide a comprehensive analysis. We have released our code for future research.
- Abstract(参考訳): 情報抽出(IE)の最近の研究は、構造化出力生成を強化するためにコードスタイルの入力を活用することに焦点を当てている。
この背景にある直感は、プログラミング言語(PL)が本質的に自然言語(NL)よりも構造的な構造を持っているということである。
この構造上の利点により、PLはIEタスクに特に適しています。
それにもかかわらず、既存の研究は主にコードスタイルのシミュレーションのためのPythonに焦点を当てており、教師付き微調整(SFT)フェーズにおいて、他の広く使われているPL(例えば、C++、Java)の可能性を見越している。
本研究では,異なるPLをSFTフェーズに組み込む可能性を探求する新しいフレームワークである,情報抽出のための大規模言語モデルを用いた,‘textbf{M}ultiple \textbf{P}rogramming \textbf{L}anguages’を提案する。
さらに、コードスタイルの入力をより効果的かつ効率的にシミュレートするために、仮想実行が可能な \texttt{function-prompt} を導入する。
幅広いデータセットに対する実験結果から,MPLの有効性が示された。
さらに,包括的分析を行うため,広範囲な実験を行った。
将来の研究のためのコードをリリースしました。
関連論文リスト
- Towards Leveraging Large Language Model Summaries for Topic Modeling in Source Code [0.0]
大規模言語モデル (LLM) は、プログラムの理解能力を示す。
トランスフォーマーベースのトピックモデリング技術は、テキストから意味情報を抽出する効果的な方法を提供する。
本稿では,Pythonプログラムのコーパス内で意味のあるトピックを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2025-04-24T10:30:40Z) - Large Language Models Understand Layout [6.732578061359833]
大規模言語モデル(LLM)は、幅広い自然言語処理(NLP)タスクにおいて異常な能力を示す。
テキスト理解能力以外にも,空間マーカーで表されるテキストレイアウトをLLMで処理できることが示されている。
レイアウト理解能力は,視覚的質問応答(VQA)システム構築に有用であることを示す。
論文 参考訳(メタデータ) (2024-07-08T09:03:12Z) - Perplexed: Understanding When Large Language Models are Confused [3.4208414448496027]
本稿では,言語モデルが複雑になる場所を探索するライブラリであるperplexedを紹介する。
Codetokenizerと呼ばれるコードモデルの解析を支援するために構築した追加ツールを使用して、コード生成のためのLLM(Large Language Models)に焦点を当てたケーススタディを実施しました。
我々の研究したコードLLMは、コードが構文的に正しくないコーディング構造において、最悪のパフォーマンスを示しました。
論文 参考訳(メタデータ) (2024-04-09T22:03:39Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
大規模言語モデル(LLM)は、テキスト理解と生成において顕著な能力を示した。
各種IEサブタスクと技術の観点から,これらの作品を分類して概観する。
我々は,最も先進的な手法を実証的に分析し,LLMによるIEタスクの出現傾向を明らかにする。
論文 参考訳(メタデータ) (2023-12-29T14:25:22Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - Exploring Large Language Models for Code Explanation [3.2570216147409514]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げている。
本研究では,様々なLLMを用いて,コードスニペットの自然言語要約を生成するタスクについて検討する。
論文 参考訳(メタデータ) (2023-10-25T14:38:40Z) - Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data? [49.688233418425995]
Struc-Benchは、大きな言語モデル(LLM)を特徴とする包括的なベンチマークである。
Pスコア(Prompting Score)とHスコア(Heuristical Score)の2つの革新的な指標を提案する。
実験の結果,LLaMA-7Bに構造認識の微調整を適用すると,性能が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2023-09-16T11:31:58Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - AskIt: Unified Programming Interface for Programming with Large Language
Models [0.0]
大規模言語モデル(LLM)は創発能力として知られるユニークな現象を示し、多くのタスクにまたがって適応性を示す。
本稿では,LLM用に特別に設計されたドメイン固有言語であるAskItを紹介する。
50タスクにわたって、AskItは簡潔なプロンプトを生成し、ベンチマークよりも16.14パーセントのプロンプト長の削減を実現した。
論文 参考訳(メタデータ) (2023-08-29T21:44:27Z) - Instruction Tuning for Large Language Models: A Survey [52.86322823501338]
我々は、教師付き微調整(SFT)の一般的な方法論を含む、文献の体系的なレビューを行う。
また、既存の戦略の欠陥を指摘しながら、SFTの潜在的な落とし穴についても、それに対する批判とともに検討する。
論文 参考訳(メタデータ) (2023-08-21T15:35:16Z) - Explaining Patterns in Data with Language Models via Interpretable
Autoprompting [143.4162028260874]
本稿では,データを説明する自然言語文字列を生成するアルゴリズムである,解釈可能なオートプロンプト(iPrompt)を提案する。
iPromptは、基盤となるデータセット記述を正確に見つけることで、意味のある洞察を得ることができる。
fMRIデータセットを用いた実験は、iPromptが科学的発見に役立つ可能性を示している。
論文 参考訳(メタデータ) (2022-10-04T18:32:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。