論文の概要: Veracity Bias and Beyond: Uncovering LLMs' Hidden Beliefs in Problem-Solving Reasoning
- arxiv url: http://arxiv.org/abs/2505.16128v1
- Date: Thu, 22 May 2025 02:13:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.974953
- Title: Veracity Bias and Beyond: Uncovering LLMs' Hidden Beliefs in Problem-Solving Reasoning
- Title(参考訳): Veracity BiasとBeyond: 問題解決推論におけるLLMの隠れた信念の発見
- Authors: Yue Zhou, Barbara Di Eugenio,
- Abstract要約: 人口統計学的ステレオタイプに対する人間の価値整合モデルとの整合性にもかかわらず、様々な社会的文脈下でバイアスを示すことが示されている。
帰属バイアス(Attribution Bias)は、特定の人口集団に対する正しい解を不均等に属性するものであり、評価バイアス(Access Bias)とは、同一の解に対するモデルの評価が、認識された人口集団の権威に基づいて異なるものである。
以上の結果から, 人口統計学的偏見は, 表面レベルのステレオタイプや社会的文脈的挑発を超えて, 教育・評価環境におけるLCMの展開に対する懸念が高まることが示唆された。
- 参考スコア(独自算出の注目度): 4.452208564152158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite LLMs' explicit alignment against demographic stereotypes, they have been shown to exhibit biases under various social contexts. In this work, we find that LLMs exhibit concerning biases in how they associate solution veracity with demographics. Through experiments across five human value-aligned LLMs on mathematics, coding, commonsense, and writing problems, we reveal two forms of such veracity biases: Attribution Bias, where models disproportionately attribute correct solutions to certain demographic groups, and Evaluation Bias, where models' assessment of identical solutions varies based on perceived demographic authorship. Our results show pervasive biases: LLMs consistently attribute fewer correct solutions and more incorrect ones to African-American groups in math and coding, while Asian authorships are least preferred in writing evaluation. In additional studies, we show LLMs automatically assign racially stereotypical colors to demographic groups in visualization code, suggesting these biases are deeply embedded in models' reasoning processes. Our findings indicate that demographic bias extends beyond surface-level stereotypes and social context provocations, raising concerns about LLMs' deployment in educational and evaluation settings.
- Abstract(参考訳): LLMは、人口統計学的ステレオタイプに対する明確なアライメントにもかかわらず、様々な社会的文脈下でバイアスを示すことが示されている。
本研究では, LLMが, 解の妥当性と人口統計学の関連性に偏りを示すことを明らかにする。
帰属バイアス(Attribution Bias)は、特定の人口集団に対する正しい解を不均等に属性付けするものであり、モデルによる同一解の評価は、認識された人口統計学的著者によって異なる。
LLMは一貫して正しい解を減らし、より間違った解を数学やコーディングのアフリカ系アメリカ人グループに与えている。
さらに, LLMは, 人口統計学的グループに自動的に人種的ステレオタイプカラーを割り当て, これらのバイアスがモデルの推論プロセスに深く埋め込まれていることが示唆された。
以上の結果から, 人口統計学的偏見は, 表面レベルのステレオタイプや社会的文脈的挑発を超えて, 教育・評価環境におけるLCMの展開に対する懸念が高まることが示唆された。
関連論文リスト
- Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
本稿では, LLMのイデオロギー的姿勢が創造者の世界観を反映していることを示す。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - LLMs are Biased Teachers: Evaluating LLM Bias in Personalized Education [6.354025374447606]
パーソナライズされた教育環境において,大きな言語モデル(LLM)をバイアスとして評価する。
我々は、異なる人口集団に合わせた教育コンテンツをモデルが生成し、選択する方法について、重大なバイアスを明らかにした。
論文 参考訳(メタデータ) (2024-10-17T20:27:44Z) - White Men Lead, Black Women Help? Benchmarking Language Agency Social Biases in LLMs [58.27353205269664]
社会的偏見は言語機関に現れることがある。
本稿では,言語庁バイアス評価ベンチマークを紹介する。
我々は,最近の3つのLarge Language Model(LLM)生成コンテンツにおいて,言語エージェンシーの社会的バイアスを明らかにした。
論文 参考訳(メタデータ) (2024-04-16T12:27:54Z) - A Theory of LLM Sampling: Part Descriptive and Part Prescriptive [53.08398658452411]
大規模言語モデル(LLM)は、自律的な意思決定にますます活用されている。
このサンプリング行動が人間の意思決定と類似していることが示される。
統計的ノルムから規範的成分へのサンプルの偏りは、様々な現実世界の領域にまたがる概念に一貫して現れることを示す。
論文 参考訳(メタデータ) (2024-02-16T18:28:43Z) - Large Language Models are Geographically Biased [47.88767211956144]
我々は、地理のレンズを通して、我々の住む世界について、Large Language Models (LLM)が何を知っているかを研究する。
我々は,地理空間予測において,システム的誤りと定義する,様々な問題的地理的バイアスを示す。
論文 参考訳(メタデータ) (2024-02-05T02:32:09Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
大規模言語モデル(LLM)は人気を集め、大規模なユーザコミュニティで広く採用されている。
既存の評価手法には多くの制約があり、それらの結果は限定的な解釈可能性を示している。
本稿では,LPMの高性能性を活用し,モデル内のバイアスを評価するGPTBIASというバイアス評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T12:02:14Z) - Sociodemographic Prompting is Not Yet an Effective Approach for Simulating Subjective Judgments with LLMs [13.744746481528711]
大規模言語モデル(LLM)は、様々な文脈で人間の反応をシミュレートするために広く使われている。
我々は,2つの主観的判断課題(丁寧さと攻撃性)において,人口差を理解する能力について,9つの人気のLCMを評価した。
ゼロショット設定では、両方のタスクのほとんどのモデルの予測は、アジアやブラックの参加者よりもホワイトの参加者のラベルとより密接に一致している。
論文 参考訳(メタデータ) (2023-11-16T10:02:24Z) - "Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in
LLM-Generated Reference Letters [97.11173801187816]
大規模言語モデル(LLM)は、個人が様々な種類のコンテンツを書くのを支援する効果的なツールとして最近登場した。
本稿では, LLM 生成した参照文字の性別バイアスについて批判的に検討する。
論文 参考訳(メタデータ) (2023-10-13T16:12:57Z) - Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models [0.0]
本稿では, 年齢や美しさなど, 研究の少ない, 連続的な, 次元に沿ったバイアスについて検討する。
実験心理学において, LLMは, 特定の社会集団に対して, 肯定的, 否定的感情の偏見を広く抱いているか, あるいは「美しいものは良い」バイアスと類似しているかを問う。
論文 参考訳(メタデータ) (2023-09-16T07:07:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。