論文の概要: Large Language Models Reflect the Ideology of their Creators
- arxiv url: http://arxiv.org/abs/2410.18417v2
- Date: Thu, 30 Jan 2025 15:45:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:13:03.775060
- Title: Large Language Models Reflect the Ideology of their Creators
- Title(参考訳): 大規模言語モデルは創造者のイデオロギーを反映する
- Authors: Maarten Buyl, Alexander Rogiers, Sander Noels, Guillaume Bied, Iris Dominguez-Catena, Edith Heiter, Iman Johary, Alexandru-Cristian Mara, Raphaël Romero, Jefrey Lijffijt, Tijl De Bie,
- Abstract要約: 大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
本稿では, LLMのイデオロギー的姿勢が創造者の世界観を反映していることを示す。
- 参考スコア(独自算出の注目度): 71.65505524599888
- License:
- Abstract: Large language models (LLMs) are trained on vast amounts of data to generate natural language, enabling them to perform tasks like text summarization and question answering. These models have become popular in artificial intelligence (AI) assistants like ChatGPT and already play an influential role in how humans access information. However, the behavior of LLMs varies depending on their design, training, and use. In this paper, we prompt a diverse panel of popular LLMs to describe a large number of prominent personalities with political relevance, in all six official languages of the United Nations. By identifying and analyzing moral assessments reflected in their responses, we find normative differences between LLMs from different geopolitical regions, as well as between the responses of the same LLM when prompted in different languages. Among only models in the United States, we find that popularly hypothesized disparities in political views are reflected in significant normative differences related to progressive values. Among Chinese models, we characterize a division between internationally- and domestically-focused models. Our results show that the ideological stance of an LLM appears to reflect the worldview of its creators. This poses the risk of political instrumentalization and raises concerns around technological and regulatory efforts with the stated aim of making LLMs ideologically 'unbiased'.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練され、テキスト要約や質問応答といったタスクを実行できる。
これらのモデルは、ChatGPTのような人工知能(AI)アシスタントで人気となり、人間が情報にアクセスする方法においてすでに重要な役割を果たしている。
しかし、LCMの挙動は設計、訓練、使用によって異なる。
本稿は、国連の6つの公用語全てにおいて、政治的関連性を持つ多数の著名な個人性を記述するために、多岐にわたるLLMのパネルを提唱する。
応答に反映される道徳的評価を同定し分析することにより、異なる地政学的領域のLLMと、異なる言語で刺激された場合の同じLLMの応答との規範的な相違を見出す。
アメリカ合衆国のモデルの中で、政治的見解の一般的な仮説上の相違は、進歩的価値に関する顕著な規範的差異に反映されている。
中国のモデルの中で、我々は国際的に焦点を絞ったモデルと国内的に焦点を絞ったモデルとを区別する。
以上の結果から, LLMのイデオロギー的姿勢は創造者の世界観を反映していると考えられる。
このことは、政治的手段化のリスクを生じさせ、LLMをイデオロギー的に「偏見のない」ものにすることを目的として、技術と規制の取り組みに関する懸念を提起する。
関連論文リスト
- Hate Personified: Investigating the role of LLMs in content moderation [64.26243779985393]
ヘイト検出などの主観的タスクでは,人々が嫌悪感を知覚する場合には,多様なグループを表現できるLarge Language Model(LLM)の能力は不明確である。
追加の文脈をプロンプトに含めることで、LLMの地理的プライミングに対する感受性、ペルソナ属性、数値情報を分析し、様々なグループのニーズがどの程度反映されているかを評価する。
論文 参考訳(メタデータ) (2024-10-03T16:43:17Z) - Do language models practice what they preach? Examining language ideologies about gendered language reform encoded in LLMs [6.06227550292852]
我々は、英語のジェンダー化言語改革を事例として、LLMが作成したテキストにおける言語イデオロギーについて研究する。
LLMは「正しい」あるいは「自然な」言語を使うよう求められた時、保守的な(進歩的な)価値観に合わせるよう求められた時と、最もよく似た言語を使用する。
このことは、LLMが生成したテキストで表現される言語イデオロギーがいかに異なるかを示しており、これはユーザにとって予期せぬことである。
論文 参考訳(メタデータ) (2024-09-20T18:55:48Z) - Investigating Context Effects in Similarity Judgements in Large Language Models [6.421776078858197]
大規模言語モデル(LLM)は、自然言語テキストの理解と生成におけるAIモデルの能力に革命をもたらした。
命令バイアスによる人的判断とLCMのアライメントに関する調査が進行中である。
論文 参考訳(メタデータ) (2024-08-20T10:26:02Z) - GermanPartiesQA: Benchmarking Commercial Large Language Models for Political Bias and Sycophancy [20.06753067241866]
我々は,OpenAI, Anthropic, Cohereの6つのLDMのアライメントをドイツ政党の立場と比較した。
我々は、主要なドイツの国会議員のベンチマークデータと社会デマグラフィーデータを用いて、迅速な実験を行う。
論文 参考訳(メタデータ) (2024-07-25T13:04:25Z) - Language Model Alignment in Multilingual Trolley Problems [138.5684081822807]
Moral Machine 実験に基づいて,MultiTP と呼ばれる100以上の言語でモラルジレンマヴィグネットの言語間コーパスを開発する。
分析では、19の異なるLLMと人間の判断を一致させ、6つのモラル次元をまたいだ嗜好を捉えた。
我々は、AIシステムにおける一様道徳的推論の仮定に挑戦し、言語間のアライメントの顕著なばらつきを発見した。
論文 参考訳(メタデータ) (2024-07-02T14:02:53Z) - Assessing Political Bias in Large Language Models [0.624709220163167]
我々は、ドイツの有権者の視点から、欧州連合(EU)内の政治問題に関するオープンソースのLarge Language Models(LLMs)の政治的バイアスを評価する。
Llama3-70Bのような大型モデルは、左派政党とより緊密に連携する傾向にあるが、小さなモデルは中立であることが多い。
論文 参考訳(メタデータ) (2024-05-17T15:30:18Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
大規模言語モデル(LLM)の政治的指向性について,8つのトピックのスペクトルにわたって検討する。
我々の調査は、中絶からLGBTQ問題まで8つのトピックにまたがるLLMの政治的整合性について考察している。
この結果から,ユーザはクエリ作成時に留意すべきであり,中立的なプロンプト言語を選択する際には注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-15T04:02:24Z) - Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models [61.45529177682614]
我々は,大規模言語モデルにおける価値と意見の制約評価パラダイムに挑戦する。
強制されない場合、モデルが実質的に異なる答えを与えることを示す。
我々はこれらの知見をLLMの価値と意見を評価するための推奨とオープンな課題に抽出する。
論文 参考訳(メタデータ) (2024-02-26T18:00:49Z) - Measurement in the Age of LLMs: An Application to Ideological Scaling [1.9413548770753526]
本稿では,大規模言語モデル(LLM)を用いて,社会科学的測定タスクに固有の概念的乱雑を探索する。
我々は、議員とテキストの両方のイデオロギー的尺度を引き出すために、LLMの顕著な言語的流布に依存している。
論文 参考訳(メタデータ) (2023-12-14T18:34:06Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。