論文の概要: Flow Matching based Sequential Recommender Model
- arxiv url: http://arxiv.org/abs/2505.16298v1
- Date: Thu, 22 May 2025 06:53:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.09668
- Title: Flow Matching based Sequential Recommender Model
- Title(参考訳): フローマッチングに基づくシーケンスレコメンダモデル
- Authors: Feng Liu, Lixin Zou, Xiangyu Zhao, Min Tang, Liming Dong, Dan Luo, Xiangyang Luo, Chenliang Li,
- Abstract要約: 本研究では,フローマッチングに基づくフローマッチングモデルであるFMRecを紹介する。
FMRecは最先端の手法よりも平均6.53%改善している。
- 参考スコア(独自算出の注目度): 54.815225661065924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models, particularly diffusion model, have emerged as powerful tools for sequential recommendation. However, accurately modeling user preferences remains challenging due to the noise perturbations inherent in the forward and reverse processes of diffusion-based methods. Towards this end, this study introduces FMRec, a Flow Matching based model that employs a straight flow trajectory and a modified loss tailored for the recommendation task. Additionally, from the diffusion-model perspective, we integrate a reconstruction loss to improve robustness against noise perturbations, thereby retaining user preferences during the forward process. In the reverse process, we employ a deterministic reverse sampler, specifically an ODE-based updating function, to eliminate unnecessary randomness, thereby ensuring that the generated recommendations closely align with user needs. Extensive evaluations on four benchmark datasets reveal that FMRec achieves an average improvement of 6.53% over state-of-the-art methods. The replication code is available at https://github.com/FengLiu-1/FMRec.
- Abstract(参考訳): 生成モデル、特に拡散モデルは、シーケンシャルなレコメンデーションのための強力なツールとして現れています。
しかし,拡散法の前と逆のプロセスに固有のノイズ摂動のため,ユーザの好みを正確にモデル化することは依然として困難である。
そこで本研究では,フローマッチングに基づくモデルであるFMRecを紹介した。
さらに,拡散モデルの観点から,ノイズ摂動に対するロバスト性を改善するために再構成損失を統合することにより,前処理時のユーザの嗜好を維持する。
逆のプロセスでは、決定論的逆サンプリング、特にODEベースの更新関数を用い、不要なランダム性を排除し、生成したレコメンデーションがユーザニーズと密接に一致することを保証する。
4つのベンチマークデータセットの大規模な評価は、FMRecが最先端の手法よりも平均6.53%改善していることを示している。
レプリケーションコードはhttps://github.com/FengLiu-1/FMRecで公開されている。
関連論文リスト
- Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
独自の予測と潜在的にノイズの多いラベルを使ってモデルをトレーニングすることは、モデルパフォーマンスを改善するためのよく知られた戦略である。
本稿では,モデルの予測と提供ラベルを最適に組み合わせる方法について論じる。
我々の主な貢献は、現在のモデルの予測と与えられたラベルを組み合わせたベイズ最適集約関数の導出である。
論文 参考訳(メタデータ) (2025-05-21T07:16:44Z) - Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
シークエンシャルレコメンデーション(SR)は、ユーザーが過去の行動に基づいて興味を持つかもしれない項目を予測することを目的としている。
我々はSRを新しい情報理論の観点から再検討し、逐次モデリング手法がユーザの行動のランダム性と予測不可能性を適切に把握できないことを発見した。
ファジィ情報処理理論に触発された本論文では,制限を克服し,ユーザの関心事の進化をよりよく捉えるために,ファジィなインタラクションシーケンスの組を導入する。
論文 参考訳(メタデータ) (2024-10-31T14:52:01Z) - Adjoint Matching: Fine-tuning Flow and Diffusion Generative Models with Memoryless Stochastic Optimal Control [26.195547996552406]
我々は,反復的プロセスを通じてサンプルを生成する動的生成モデルに対して,報酬微調整を最適制御(SOC)として用いた。
提案手法は,報酬の微調整,一貫性の向上,リアリズム,人間の選好報酬モデルへの一般化など,既存の方法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-09-13T14:22:14Z) - Bridging User Dynamics: Transforming Sequential Recommendations with Schrödinger Bridge and Diffusion Models [49.458914600467324]
拡散に基づく逐次レコメンデーションモデルにSchr"odinger Bridgeを導入し、SdifRecモデルを作成する。
また、ユーザクラスタリング情報を誘導条件として利用するcon-SdifRecと呼ばれるSdifRecの拡張版も提案する。
論文 参考訳(メタデータ) (2024-08-30T09:10:38Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。