論文の概要: SAMba-UNet: SAM2-Mamba UNet for Cardiac MRI in Medical Robotic Perception
- arxiv url: http://arxiv.org/abs/2505.16304v2
- Date: Tue, 09 Sep 2025 09:33:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 14:38:26.828036
- Title: SAMba-UNet: SAM2-Mamba UNet for Cardiac MRI in Medical Robotic Perception
- Title(参考訳): SAMba-UNet: SAM2-Mamba UNet for Cardiac MRI in Medical Robotic Perception
- Authors: Guohao Huo, Ruiting Dai, Ling Shao, Hao Tang,
- Abstract要約: 自動心臓MRI領域における病理的特徴抽出のための新しいデュアルエンコーダアーキテクチャSAMba-UNetを提案する。
SAMba-UNet は 0.9103 と HD95 の 1.0859 mm を達成し、特に右心室のような挑戦的な構造のために境界の局在を改善した。
その頑丈で高忠実なセグメンテーションマップは、インテリジェントな医療・外科ロボットシステムにおける知覚モジュールとして直接適用できる。
- 参考スコア(独自算出の注目度): 34.79269228659671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To address complex pathological feature extraction in automated cardiac MRI segmentation, we propose SAMba-UNet, a novel dual-encoder architecture that synergistically combines the vision foundation model SAM2, the linear-complexity state-space model Mamba, and the classical UNet to achieve cross-modal collaborative feature learning; to overcome domain shifts between natural images and medical scans, we introduce a Dynamic Feature Fusion Refiner that employs multi-scale pooling and channel-spatial dual-path calibration to strengthen small-lesion and fine-structure representation, and we design a Heterogeneous Omni-Attention Convergence Module (HOACM) that fuses SAM2's local positional semantics with Mamba's long-range dependency modeling via global contextual attention and branch-selective emphasis, yielding substantial gains in both global consistency and boundary precision-on the ACDC cardiac MRI benchmark, SAMba-UNet attains a Dice of 0.9103 and HD95 of 1.0859 mm, notably improving boundary localization for challenging structures like the right ventricle, and its robust, high-fidelity segmentation maps are directly applicable as a perception module within intelligent medical and surgical robotic systems to support preoperative planning, intraoperative navigation, and postoperative complication screening; the code will be open-sourced to facilitate clinical translation and further validation.
- Abstract(参考訳): 自動心臓MRIセグメンテーションにおける複雑な病理学的特徴抽出を実現するため,SAMba-UNetを提案する。SAMba-UNetは,視覚基盤モデル SAM2,線形複雑状態空間モデル Mamba と古典的 UNet を相乗的に組み合わせて相互協調的特徴学習を実現し,自然画像と医用スキャンのドメインシフトを克服するために,マルチスケールプールとチャネル空間デュアルパスキャリブレーションを併用した動的特徴融合リファイナを導入し,小型かつ微細な構造表現を強化し,また,多種性Omni-Attention Convergence Module (HOACM) を設計する。
関連論文リスト
- FaRMamba: Frequency-based learning and Reconstruction aided Mamba for Medical Segmentation [3.5790602918760586]
Vision Mambaは、グローバルな依存関係を効率的にモデル化するために、一次元の因果状態空間の再現を用いる。
パッチトークン化と1Dシリアライゼーションは、局所的なピクセル隣接性を阻害し、ローパスフィルタリング効果を課す。
2つの相補的なモジュールを通してLHICDと2D-SSDを明示的に扱う新しい拡張であるFaRMambaを提案する。
論文 参考訳(メタデータ) (2025-07-26T20:41:53Z) - ABS-Mamba: SAM2-Driven Bidirectional Spiral Mamba Network for Medical Image Translation [20.242887183708653]
ABS-Mambaはオーガニック・アウェア・セマンティックな表現のための新しいアーキテクチャである。
CNNは、モダリティ固有のエッジとテクスチャの詳細を保存する。
効率的な長距離および短距離機能依存のためのMambaの選択的な状態空間モデリング。
論文 参考訳(メタデータ) (2025-05-12T15:51:15Z) - MSV-Mamba: A Multiscale Vision Mamba Network for Echocardiography Segmentation [8.090155401012169]
新興モデルであるMambaは、多様なビジョンや言語タスクに広く適用されている、最先端のアプローチの1つだ。
本稿では,大画面マルチスケールマンバモジュールと階層的特徴融合を併用したU字型深層学習モデルを提案する。
論文 参考訳(メタデータ) (2025-01-13T08:22:10Z) - HCMA-UNet: A Hybrid CNN-Mamba UNet with Axial Self-Attention for Efficient Breast Cancer Segmentation [7.807738181550226]
本研究は,乳癌の病変分割のための新しいハイブリットセグメンテーションネットワークHCMA-UNetを提案する。
我々のネットワークは軽量CNNバックボーンとMISMモジュールで構成される。
我々の軽量モデルは2.87Mパラメータと126.44 GFLOPで優れた性能を実現する。
論文 参考訳(メタデータ) (2025-01-01T06:42:57Z) - XLSTM-HVED: Cross-Modal Brain Tumor Segmentation and MRI Reconstruction Method Using Vision XLSTM and Heteromodal Variational Encoder-Decoder [9.141615533517719]
我々は,XLSTM-HVEDモデルを導入し,ヘテロモーダルエンコーダ・デコーダ・フレームワークをVision XLSTMモジュールと統合し,欠落したMRIモダリティを再構築する。
このアプローチの主な革新は、モーダル機能の統合を改善する自己意識変動(SAVE)モジュールである。
BraTS 2024データセットを用いた実験では、モダリティが欠落している場合の処理において、既存の先進的手法を著しく上回ります。
論文 参考訳(メタデータ) (2024-12-09T09:04:02Z) - Accelerated Multi-Contrast MRI Reconstruction via Frequency and Spatial Mutual Learning [50.74383395813782]
本稿では,周波数・空間相互学習ネットワーク(FSMNet)を提案する。
提案したFSMNetは, 加速度係数の異なるマルチコントラストMR再構成タスクに対して, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-09-21T12:02:47Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Joint Multimodal Transformer for Emotion Recognition in the Wild [49.735299182004404]
マルチモーダル感情認識(MMER)システムは、通常、単調なシステムよりも優れている。
本稿では,キーベースのクロスアテンションと融合するために,ジョイントマルチモーダルトランス (JMT) を利用するMMER法を提案する。
論文 参考訳(メタデータ) (2024-03-15T17:23:38Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。