論文の概要: MSV-Mamba: A Multiscale Vision Mamba Network for Echocardiography Segmentation
- arxiv url: http://arxiv.org/abs/2501.07120v1
- Date: Mon, 13 Jan 2025 08:22:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:22:27.840306
- Title: MSV-Mamba: A Multiscale Vision Mamba Network for Echocardiography Segmentation
- Title(参考訳): MSV-Mamba: 心エコー画像分割のためのマルチスケール視覚マンバネットワーク
- Authors: Xiaoxian Yang, Qi Wang, Kaiqi Zhang, Ke Wei, Jun Lyu, Lingchao Chen,
- Abstract要約: 新興モデルであるMambaは、多様なビジョンや言語タスクに広く適用されている、最先端のアプローチの1つだ。
本稿では,大画面マルチスケールマンバモジュールと階層的特徴融合を併用したU字型深層学習モデルを提案する。
- 参考スコア(独自算出の注目度): 8.090155401012169
- License:
- Abstract: Ultrasound imaging frequently encounters challenges, such as those related to elevated noise levels, diminished spatiotemporal resolution, and the complexity of anatomical structures. These factors significantly hinder the model's ability to accurately capture and analyze structural relationships and dynamic patterns across various regions of the heart. Mamba, an emerging model, is one of the most cutting-edge approaches that is widely applied to diverse vision and language tasks. To this end, this paper introduces a U-shaped deep learning model incorporating a large-window Mamba scale (LMS) module and a hierarchical feature fusion approach for echocardiographic segmentation. First, a cascaded residual block serves as an encoder and is employed to incrementally extract multiscale detailed features. Second, a large-window multiscale mamba module is integrated into the decoder to capture global dependencies across regions and enhance the segmentation capability for complex anatomical structures. Furthermore, our model introduces auxiliary losses at each decoder layer and employs a dual attention mechanism to fuse multilayer features both spatially and across channels. This approach enhances segmentation performance and accuracy in delineating complex anatomical structures. Finally, the experimental results using the EchoNet-Dynamic and CAMUS datasets demonstrate that the model outperforms other methods in terms of both accuracy and robustness. For the segmentation of the left ventricular endocardium (${LV}_{endo}$), the model achieved optimal values of 95.01 and 93.36, respectively, while for the left ventricular epicardium (${LV}_{epi}$), values of 87.35 and 87.80, respectively, were achieved. This represents an improvement ranging between 0.54 and 1.11 compared with the best-performing model.
- Abstract(参考訳): 超音波イメージングは、高ノイズレベル、時空間分解能の低下、解剖学的構造の複雑さなど、しばしば課題に遭遇する。
これらの要因は、モデルが心臓の様々な領域における構造的関係や動的パターンを正確に捉え解析する能力を著しく妨げている。
新興モデルであるMambaは、多様なビジョンや言語タスクに広く適用されている、最先端のアプローチの1つだ。
そこで本研究では,大窓マンバスケール(LMS)モジュールと階層的特徴融合手法を併用したU字型深層学習モデルを提案する。
まず、カスケードされた残留ブロックがエンコーダとして機能し、段階的に複数の詳細特徴を抽出する。
第二に、大規模マルチスケールのmambaモジュールがデコーダに統合され、領域間のグローバルな依存関係をキャプチャし、複雑な解剖学的構造に対するセグメンテーション能力を高める。
さらに, 各デコーダ層に補助的損失を導入し, 多層構造を空間的に, チャネルをまたいで融合させる2重アテンション機構を採用した。
このアプローチは、複雑な解剖構造を記述する際のセグメンテーション性能と精度を高める。
最後に、EchoNet-DynamicとCAMUSデータセットを用いた実験結果から、モデルの精度と堅牢性の両方の観点から、他の手法よりも優れていることが示された。
左室心内膜({LV}_{endo}$)のセグメンテーションでは95.01,93.36,左室心内膜({LV}_{epi}$)では87.35,87.80をそれぞれ達成した。
これは、最高のパフォーマンスモデルと比較して0.54から1.11の範囲の改善である。
関連論文リスト
- KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
カルマンフィルタを用いた線形変形型クロスアテンション(LDCA)モジュールを用いた血管セグメンテーションのための新しいネットワーク(KaLDeX)を提案する。
我々のアプローチは、カルマンフィルタ(KF)ベースの線形変形可能な畳み込み(LD)とクロスアテンション(CA)モジュールの2つの重要なコンポーネントに基づいている。
提案手法は,網膜基底画像データセット(DRIVE,CHASE_BD1,STARE)とOCTA-500データセットの3mm,6mmを用いて評価した。
論文 参考訳(メタデータ) (2024-10-28T16:00:42Z) - SurgeryV2: Bridging the Gap Between Model Merging and Multi-Task Learning with Deep Representation Surgery [54.866490321241905]
モデルマージに基づくマルチタスク学習(MTL)は、複数のエキスパートモデルをマージしてMTLを実行するための有望なアプローチを提供する。
本稿では,統合モデルの表現分布について検討し,「表現バイアス」の重要な問題を明らかにする。
このバイアスは、マージされたMTLモデルの表現と専門家モデルの間の大きな分布ギャップから生じ、マージされたMTLモデルの最適下性能に繋がる。
論文 参考訳(メタデータ) (2024-10-18T11:49:40Z) - Multiscale Encoder and Omni-Dimensional Dynamic Convolution Enrichment in nnU-Net for Brain Tumor Segmentation [9.39565041325745]
本研究では nnU-Net アーキテクチャを改良した新しいセグメンテーションアルゴリズムを提案する。
我々は、全次元動的畳み込み層を組み込むことにより従来の畳み込み層を強化し、特徴表現を改善した。
モデルの有効性はBraTS-2023チャレンジの多様なデータセットで実証される。
論文 参考訳(メタデータ) (2024-09-20T05:25:46Z) - MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation [6.673169053236727]
医用画像分割のための新しいU字型アーキテクチャであるMambaClinixを提案する。
MambaClinixは、階層的なゲート畳み込みネットワークとMambaを適応的なステージワイドフレームワークに統合する。
以上の結果から,MambaClinixは低モデルの複雑さを維持しつつ高いセグメンテーション精度を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-09-19T07:51:14Z) - MSVM-UNet: Multi-Scale Vision Mamba UNet for Medical Image Segmentation [3.64388407705261]
医用画像分割のためのマルチスケールビジョンマンバUNetモデルMSVM-UNetを提案する。
具体的には、VSSブロックにマルチスケールの畳み込みを導入することで、VMambaエンコーダの階層的特徴から、より効果的にマルチスケールの特徴表現をキャプチャし、集約することができる。
論文 参考訳(メタデータ) (2024-08-25T06:20:28Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - UNet-2022: Exploring Dynamics in Non-isomorphic Architecture [52.04899592688968]
単純並列化による自己意図と畳み込みの利点を生かした並列非同型ブロックを提案する。
得られたU字型セグメンテーションモデルをUNet-2022と呼ぶ。
実験では、UNet-2022は明らかにレンジセグメンテーションタスクにおいてその性能を上回っている。
論文 参考訳(メタデータ) (2022-10-27T16:00:04Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
関連するアルゴリズムの性能は、マルチモーダル情報の適切な融合によって大きく影響を受ける。
We present the Max-Fusion U-Net that achieve a improve pathology segmentation performance。
マルチシーケンスCMRデータセットを併用したMyoPS(Myocardial pathology segmentation)を用いて,本手法の評価を行った。
論文 参考訳(メタデータ) (2020-09-05T17:24:23Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
本稿では,皮膚病変のセグメンテーションを改善するために,Dual Objective Networks (DONet) という,シンプルで効果的なフレームワークを提案する。
我々のDONetは2つの対称デコーダを採用し、異なる目標に近づくための異なる予測を生成する。
皮膚内視鏡画像における多種多様な病変のスケールと形状の課題に対処するために,再帰的コンテキスト符号化モジュール(RCEM)を提案する。
論文 参考訳(メタデータ) (2020-08-19T06:02:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。