論文の概要: Ask, Retrieve, Summarize: A Modular Pipeline for Scientific Literature Summarization
- arxiv url: http://arxiv.org/abs/2505.16349v1
- Date: Thu, 22 May 2025 08:00:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.135005
- Title: Ask, Retrieve, Summarize: A Modular Pipeline for Scientific Literature Summarization
- Title(参考訳): Ask, Retrieve, Summarize:科学文献要約のためのモジュールパイプライン
- Authors: Pierre Achkar, Tim Gollub, Martin Potthast,
- Abstract要約: XSumは、Retrieval-Augmented Generation (RAG) を用いた科学領域におけるマルチドキュメント要約(MDS)のためのモジュールパイプラインである。
質問生成モジュールは、入力された論文に適合した質問を動的に生成し、関連および正確な情報の検索を保証する。
編集者モジュールは、取得したコンテンツを、適切な引用のための学術標準に準拠した一貫性のある、よく構造化された要約に合成する。
- 参考スコア(独自算出の注目度): 21.89131977229316
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The exponential growth of scientific publications has made it increasingly difficult for researchers to stay updated and synthesize knowledge effectively. This paper presents XSum, a modular pipeline for multi-document summarization (MDS) in the scientific domain using Retrieval-Augmented Generation (RAG). The pipeline includes two core components: a question-generation module and an editor module. The question-generation module dynamically generates questions adapted to the input papers, ensuring the retrieval of relevant and accurate information. The editor module synthesizes the retrieved content into coherent and well-structured summaries that adhere to academic standards for proper citation. Evaluated on the SurveySum dataset, XSum demonstrates strong performance, achieving considerable improvements in metrics such as CheckEval, G-Eval and Ref-F1 compared to existing approaches. This work provides a transparent, adaptable framework for scientific summarization with potential applications in a wide range of domains. Code available at https://github.com/webis-de/scolia25-xsum
- Abstract(参考訳): 科学出版物の指数的な成長は、研究者が知識を効果的に更新し、合成することがますます困難になっている。
本稿では,Retrieval-Augmented Generation (RAG) を用いたマルチドキュメント要約(MDS)のためのモジュールパイプラインであるXSumについて述べる。
パイプラインには、質問生成モジュールとエディタモジュールの2つのコアコンポーネントが含まれている。
質問生成モジュールは、入力された論文に適合した質問を動的に生成し、関連する情報と正確な情報の検索を保証する。
編集者モジュールは、取得したコンテンツを、適切な引用のための学術標準に準拠した一貫性のある、よく構造化された要約に合成する。
SurveySumデータセットに基づいて評価すると、XSumは強力なパフォーマンスを示し、既存のアプローチと比較してCheckEval、G-Eval、Ref-F1といったメトリクスを大幅に改善した。
この研究は、幅広い分野の潜在的な応用と科学的要約のための透過的で適応可能なフレームワークを提供する。
https://github.com/webis-de/scolia25-xsumで公開されているコード
関連論文リスト
- Enhancing Abstractive Summarization of Scientific Papers Using Structure Information [6.414732533433283]
本稿では,学術論文における構造的機能の自動認識を活用する2段階の抽象的要約フレームワークを提案する。
第1段階では,多くの学術論文から章題を標準化し,構造関数認識のための大規模データセットを構築した。
第2段階では、Longformerを用いて、セクション間のリッチなコンテキスト関係をキャプチャし、コンテキスト対応の要約を生成する。
論文 参考訳(メタデータ) (2025-05-20T10:34:45Z) - Can LLMs Generate Tabular Summaries of Science Papers? Rethinking the Evaluation Protocol [83.90769864167301]
文献レビュー表は、科学論文の集合を要約し比較するために欠かせないものである。
学術論文の収集にあたり,ユーザの情報ニーズを最大限に満たす表を作成するタスクについて検討する。
我々の貢献は、現実世界で遭遇する3つの重要な課題に焦点を当てている: (i)ユーザープロンプトは、しばしば未特定である; (ii)検索された候補論文は、しばしば無関係な内容を含む; (iii)タスク評価は、浅いテキスト類似性技術を超えて進むべきである。
論文 参考訳(メタデータ) (2025-04-14T14:52:28Z) - Meta Knowledge for Retrieval Augmented Large Language Models [0.0]
大規模言語モデル(LLM)のための新しいデータ中心型RAGワークフローを提案する。
提案手法は,各文書にメタデータと合成質問文(QA)を生成することに依存する。
合成質問マッチングによる拡張クエリの使用は、従来のRAGパイプラインよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-08-16T20:55:21Z) - Scientific Paper Extractive Summarization Enhanced by Citation Graphs [50.19266650000948]
我々は、引用グラフを活用して、異なる設定下での科学的論文の抽出要約を改善することに重点を置いている。
予備的な結果は、単純な教師なしフレームワークであっても、引用グラフが有用であることを示している。
そこで我々は,大規模ラベル付きデータが利用可能である場合のタスクにおいて,より正確な結果を得るために,グラフベースのスーパービジョン・サムライゼーション・モデル(GSS)を提案する。
論文 参考訳(メタデータ) (2022-12-08T11:53:12Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
大規模な検索は、クエリを与えられた巨大なコレクションから関連ドキュメントをリコールすることである。
事前学習型言語モデル(PLM)に基づく最近の検索手法は,高密度ベクターあるいはレキシコンに基づくパラダイムに大別することができる。
本論文では,高密度ベクトルとレキシコンに基づく検索を2つの表現能力を持つ1つのモデルで統合する学習フレームワークUnifieRを提案する。
論文 参考訳(メタデータ) (2022-05-23T11:01:59Z) - KG-FiD: Infusing Knowledge Graph in Fusion-in-Decoder for Open-Domain
Question Answering [68.00631278030627]
検索した通路間の構造的関係を知識グラフで利用することにより,ノイズのある通路をフィルタする新しい手法KG-FiDを提案する。
我々は,KG-FiDが解答一致スコアの最大1.5%向上し,計算コストの40%程度でFiDに匹敵する性能が得られることを示した。
論文 参考訳(メタデータ) (2021-10-08T18:39:59Z) - Enhancing Scientific Papers Summarization with Citation Graph [78.65955304229863]
引用グラフを用いて科学論文の要約作業を再定義します。
我々は,141kの研究論文を異なる領域に格納した,新しい科学論文要約データセットセマンティックスタディネットワーク(ssn)を構築した。
我々のモデルは、事前訓練されたモデルと比較して競争性能を達成することができる。
論文 参考訳(メタデータ) (2021-04-07T11:13:35Z) - Topic-Guided Abstractive Text Summarization: a Joint Learning Approach [19.623946402970933]
本稿では,抽象テキスト要約のための新しいアプローチ,トピックガイドによる抽象要約を提案する。
ニューラルネットワークをTransformerベースのシーケンス・ツー・シーケンス(seq2seq)モデルに結合学習フレームワークに組み込むことが目的だ。
論文 参考訳(メタデータ) (2020-10-20T14:45:25Z) - The SOFC-Exp Corpus and Neural Approaches to Information Extraction in
the Materials Science Domain [11.085048329202335]
我々は, 固体酸化物燃料電池に関する実験に関する情報を, 科学的出版物にマーキングするためのアノテーション・スキームを開発した。
コーパスとアノテーション間の合意研究は、提案されたエンティティ認識の複雑さを実証する。
我々は、新しいデータセットに基づいて対処できる様々なタスクに対して、強力なニューラルネットワークベースのモデルを提示します。
論文 参考訳(メタデータ) (2020-06-04T17:49:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。