論文の概要: Topic-Guided Abstractive Text Summarization: a Joint Learning Approach
- arxiv url: http://arxiv.org/abs/2010.10323v2
- Date: Fri, 27 Aug 2021 19:05:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 06:54:40.458002
- Title: Topic-Guided Abstractive Text Summarization: a Joint Learning Approach
- Title(参考訳): トピックガイドによる抽象テキスト要約:共同学習アプローチ
- Authors: Chujie Zheng, Kunpeng Zhang, Harry Jiannan Wang, Ling Fan, Zhe Wang
- Abstract要約: 本稿では,抽象テキスト要約のための新しいアプローチ,トピックガイドによる抽象要約を提案する。
ニューラルネットワークをTransformerベースのシーケンス・ツー・シーケンス(seq2seq)モデルに結合学習フレームワークに組み込むことが目的だ。
- 参考スコア(独自算出の注目度): 19.623946402970933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new approach for abstractive text summarization, Topic-Guided
Abstractive Summarization, which calibrates long-range dependencies from
topic-level features with globally salient content. The idea is to incorporate
neural topic modeling with a Transformer-based sequence-to-sequence (seq2seq)
model in a joint learning framework. This design can learn and preserve the
global semantics of the document, which can provide additional contextual
guidance for capturing important ideas of the document, thereby enhancing the
generation of summary. We conduct extensive experiments on two datasets and the
results show that our proposed model outperforms many extractive and
abstractive systems in terms of both ROUGE measurements and human evaluation.
Our code is available at: https://github.com/chz816/tas.
- Abstract(参考訳): 本稿では,抽象テキスト要約のための新しいアプローチ,トピックガイドによる抽象要約を提案する。
ニューラルネットワークをTransformerベースのシーケンス・ツー・シーケンス(seq2seq)モデルに結合学習フレームワークに組み込むことが目的だ。
この設計は、文書のグローバルな意味を学習し、保存し、文書の重要なアイデアを捉えるための追加の文脈的ガイダンスを提供することにより、要約の生成を促進できる。
2つのデータセットについて広範な実験を行い,提案モデルがルージュ計測と人間評価の両面で抽出・抽象化システムを上回ることを示した。
私たちのコードは以下の通りです。
関連論文リスト
- Write Summary Step-by-Step: A Pilot Study of Stepwise Summarization [48.57273563299046]
本稿では,新たな文書が提案されるたびに追加の要約を生成するステップワイド要約の課題を提案する。
追加された要約は、新たに追加されたコンテンツを要約するだけでなく、以前の要約と一貫性を持たなければならない。
SSGは,自動計測と人的評価の両面から,最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2024-06-08T05:37:26Z) - Controllable Topic-Focused Abstractive Summarization [57.8015120583044]
制御された抽象的な要約は、特定の側面をカバーするために、ソース記事の凝縮したバージョンを作成することに焦点を当てる。
本稿では,トピックに着目した要約を生成可能なトランスフォーマーアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-11-12T03:51:38Z) - GoSum: Extractive Summarization of Long Documents by Reinforcement
Learning and Graph Organized discourse state [6.4805900740861]
長文要約のための強化学習に基づく抽出モデルであるGoSumを提案する。
GoSumは入力文書ごとに異なる談話レベルから異質なグラフを構築することで状態をエンコードする。
論文要約の2つのデータセット,PubMed と arXiv のモデルを評価する。
論文 参考訳(メタデータ) (2022-11-18T14:07:29Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
学術論文からN-ary関係を抽出する問題について考察する。
提案手法であるReSelは,このタスクを2段階のプロシージャに分解する。
3つの科学的情報抽出データセットに対する実験により、ReSelは最先端のベースラインを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2022-10-26T02:28:02Z) - Topic-Guided Abstractive Multi-Document Summarization [21.856615677793243]
多文書要約(MDS)の重要なポイントは、様々な文書間の関係を学習することである。
異種グラフとして複数の文書を表現できる新しい抽象MDSモデルを提案する。
我々は、クロスドキュメントセマンティックユニットとして機能する潜在トピックを共同で発見するために、ニューラルトピックモデルを採用している。
論文 参考訳(メタデータ) (2021-10-21T15:32:30Z) - RetrievalSum: A Retrieval Enhanced Framework for Abstractive
Summarization [25.434558112121778]
本稿では,高密度Retriever と Summarizer を組み合わせた新しい検索強化抽象要約フレームワークを提案する。
提案手法は,複数のドメインにまたがる広範囲な要約データセットと,BERTとBARTの2つのバックボーンモデルで検証する。
その結果, ROUGE-1 スコアの1.384.66 倍の精度向上が得られた。
論文 参考訳(メタデータ) (2021-09-16T12:52:48Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASSは、統合されたセマンティックグラフに基づく抽象的な要約を促進するためのフレームワークである。
文書表現と要約生成の両方を改善するために,グラフベースのエンコーダデコーダモデルを提案する。
実験結果から,提案アーキテクチャは長期文書および複数文書要約タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2021-05-25T16:20:48Z) - A Cascade Approach to Neural Abstractive Summarization with Content
Selection and Fusion [41.60603627311872]
本稿では,ニューラルネットワークの要約のためのカスケードアーキテクチャを提案する。
重要コンテンツの断片を別々に識別し、それらをコヒーレントなテキストに縫合するカスケードパイプラインは、エンド・ツー・エンドのシステムに匹敵する、あるいはオーバーランクであることを示す。
論文 参考訳(メタデータ) (2020-10-08T01:49:16Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Factは、質問応答モデルから学んだ知識を活用して、スパン選択によるシステム生成サマリーの補正を行う2つの事実補正モデルのスイートである。
我々のモデルは、ソースコードのセマンティック一貫性を確保するために、反復的または自動回帰的にエンティティを置き換えるために、シングルまたはマルチマスキング戦略を採用している。
実験の結果,自動測定と人的評価の両面において,要約品質を犠牲にすることなく,システム生成要約の事実整合性を大幅に向上させることができた。
論文 参考訳(メタデータ) (2020-10-06T02:51:02Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
我々は、文書のよく知られたグラフ表現を活用することができる、抽象的多文書要約(MDS)モデルを開発する。
本モデルでは,長い文書の要約に欠かせない文書間関係を捉えるために,文書の符号化にグラフを利用する。
また,このモデルでは,要約生成プロセスの導出にグラフを利用することが可能であり,一貫性と簡潔な要約を生成するのに有用である。
論文 参考訳(メタデータ) (2020-05-20T13:39:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。