Neuromorphic-based metaheuristics: A new generation of low power, low latency and small footprint optimization algorithms
- URL: http://arxiv.org/abs/2505.16362v1
- Date: Thu, 22 May 2025 08:14:07 GMT
- Title: Neuromorphic-based metaheuristics: A new generation of low power, low latency and small footprint optimization algorithms
- Authors: El-ghazali Talbi,
- Abstract summary: Neuromorphic computing (NC) introduces a novel algorithmic paradigm representing a major shift from traditional digital computing of Von Neumann architectures.<n>Much of the research in NC has concentrated on machine learning applications and neuroscience simulations.<n>This paper investigates the modelling and implementation of optimization algorithms and particularly metaheuristics using the NC paradigm as an alternative to Von Neumann architectures.
- Score: 0.3626013617212667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuromorphic computing (NC) introduces a novel algorithmic paradigm representing a major shift from traditional digital computing of Von Neumann architectures. NC emulates or simulates the neural dynamics of brains in the form of Spiking Neural Networks (SNNs). Much of the research in NC has concentrated on machine learning applications and neuroscience simulations. This paper investigates the modelling and implementation of optimization algorithms and particularly metaheuristics using the NC paradigm as an alternative to Von Neumann architectures, leading to breakthroughs in solving optimization problems. Neuromorphic-based metaheuristics (Nheuristics) are supposed to be characterized by low power, low latency and small footprint. Since NC systems are fundamentally different from conventional Von Neumann computers, several challenges are posed to the design and implementation of Nheuristics. A guideline based on a classification and critical analysis is conducted on the different families of metaheuristics and optimization problems they address. We also discuss future directions that need to be addressed to expand both the development and application of Nheuristics.
Related papers
- Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning [78.88684753303794]
Deep learning has predominantly advanced through applications in computer vision and natural language processing.<n>Neural operators are a principled way to generalize neural networks to mappings between function spaces.<n>This paper identifies and distills the key principles for constructing practical implementations of mappings between infinite-dimensional function spaces.
arXiv Detail & Related papers (2025-06-12T17:59:31Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - NN-Steiner: A Mixed Neural-algorithmic Approach for the Rectilinear
Steiner Minimum Tree Problem [5.107107601277712]
We focus on the rectilinear Steiner minimum tree (RSMT) problem, which is of critical importance in IC layout design.
We propose NN-Steiner, which is a novel mixed neural-algorithmic framework for computing RSMTs.
In particular, NN-Steiner only needs four neural network (NN) components that are called repeatedly within an algorithmic framework.
arXiv Detail & Related papers (2023-12-17T02:42:11Z) - Neuromorphic Intermediate Representation: A Unified Instruction Set for Interoperable Brain-Inspired Computing [4.066607775161713]
Spiking neural networks and neuromorphic hardware platforms that simulate neuronal dynamics are getting wide attention.
Here, we establish a common reference frame for computations in digital neuromorphic systems.
We demonstrate by reproducing three spiking neural network models of different complexity across 7 neuromorphic simulators and 4 digital hardware platforms.
arXiv Detail & Related papers (2023-11-24T18:15:59Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Exploiting Noise as a Resource for Computation and Learning in Spiking
Neural Networks [32.0086664373154]
This study introduces the noisy spiking neural network (NSNN) and the noise-driven learning rule (NDL)
NSNN provides a theoretical framework that yields scalable, flexible, and reliable computation.
arXiv Detail & Related papers (2023-05-25T13:21:26Z) - Unsupervised Legendre-Galerkin Neural Network for Stiff Partial
Differential Equations [9.659504024299896]
We propose an unsupervised machine learning algorithm based on the Legendre-Galerkin neural network to find an accurate approximation to the solution of different types of PDEs.
The proposed neural network is applied to the general 1D and 2D PDEs as well as singularly perturbed PDEs that possess boundary layer behavior.
arXiv Detail & Related papers (2022-07-21T00:47:47Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.