論文の概要: FREESON: Retriever-Free Retrieval-Augmented Reasoning via Corpus-Traversing MCTS
- arxiv url: http://arxiv.org/abs/2505.16409v1
- Date: Thu, 22 May 2025 09:00:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.16923
- Title: FREESON: Retriever-Free Retrieval-Augmented Reasoning via Corpus-Traversing MCTS
- Title(参考訳): FREESON:Retriever-free Retrieval-Augmented Reasoning via Corpus-Traversing MCTS
- Authors: Chaeeun Kim, Seungone Kim,
- Abstract要約: 大規模推論モデル(LRM)は,多段階推論において,適切なステップで検索エンジンを呼び出す際,顕著な機能を示した。
FREESON(Retriever-FREE Retrieval-Augmented ReaSONing)と呼ばれる新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.6340559025561785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Reasoning Models (LRMs) have demonstrated remarkable capabilities in multi-step reasoning and calling search engines at appropriate steps. However, existing retrieval-augmented reasoning approaches rely on separate retrieval models, limiting the LRM's role in retrieval to deciding when to retrieve and how to query. This separation not only increases hardware and operational costs but also leads to errors in the retrieval process due to the representation bottleneck, a phenomenon where the retriever's embedding space is not expressive enough to meet the generator's requirements. To address this, we shift our perspective from sequence-to-sequence matching to locating the answer-containing paths within the corpus, and propose a novel framework called FREESON (Retriever-FREE Retrieval-Augmented ReaSONing). This framework enables LRMs to retrieve relevant knowledge on their own by acting as both a generator and retriever. To achieve this, we introduce a variant of the MCTS algorithm specialized for the retrieval task, which we call CT-MCTS (Corpus-Traversing Monte Carlo Tree Search). In this algorithm, LRMs traverse through the corpus toward answer-containing regions. Our results on five open-domain QA benchmarks, including single-hop and multi-hop questions, show that FREESON achieves an average improvement of 14.4% in EM and F1 over four multi-step reasoning models with a separate retriever, and it also performs comparably to the strongest baseline, surpassing it by 3% on PopQA and 2WikiMultihopQA.
- Abstract(参考訳): 大規模推論モデル(LRM)は,多段階推論において,適切なステップで検索エンジンを呼び出す際,顕著な機能を示した。
しかし、既存の検索強化推論アプローチは、検索におけるLRMの役割を、検索のタイミングとクエリの方法を決定することに制限する、別々の検索モデルに依存している。
この分離は、ハードウェアと運用コストを増大させるだけでなく、表現ボトルネックによる検索プロセスのエラーにつながる。
これを解決するために、我々は、シーケンスマッチングからコーパス内の応答を含む経路の配置に視点を移し、FREESON(Retriever-FREE Retrieval-Augmented ReaSONing)と呼ばれる新しいフレームワークを提案する。
このフレームワークは、LRMがジェネレータとレトリバーの両方として機能することで、自分自身で関連する知識を検索することを可能にする。
そこで我々は,CT-MCTS (Corpus-Traversing Monte Carlo Tree Search) と呼ばれる検索タスクに特化したMCTSアルゴリズムの変種を導入する。
このアルゴリズムでは、LRMはコーパスを通り抜けて応答を含む領域に向かう。
シングルホップとマルチホップの質問を含む5つのオープンドメインQAベンチマークの結果、FREESONは4つのマルチステップ推論モデルに対してEMとF1の平均14.4%の改善を達成し、PopQAと2WikiMultihopQAを3%上回り、最強のベースラインに匹敵する性能を示した。
関連論文リスト
- TreeHop: Generate and Filter Next Query Embeddings Efficiently for Multi-hop Question Answering [27.37434534716611]
TreeHopはマルチホップ質問応答のための埋め込みレベルのフレームワークである。
TreeHopはクエリの埋め込みを動的に更新する。
TreeHopは、知識集約型アプリケーションにデプロイするための、より速く、よりコスト効率の良いソリューションです。
論文 参考訳(メタデータ) (2025-04-28T01:56:31Z) - MultiConIR: Towards multi-condition Information Retrieval [57.6405602406446]
我々は,マルチコンディションシナリオにおける検索モデルの評価を目的とした,最初のベンチマークであるMultiConIRを紹介する。
本稿では,マルチコンディションのロバスト性,モノトニック関連性ランキング,クエリフォーマットの感度に基づいて,検索とリランクモデルの評価を行う3つのタスクを提案する。
論文 参考訳(メタデータ) (2025-03-11T05:02:03Z) - MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs [78.5013630951288]
本稿では,マルチモーダル大言語モデル(MLLM)を用いた情報検索手法を提案する。
まず,16個の検索タスクを持つ10個のデータセットに対して,MLLMをバイエンコーダレトリバーとして微調整する。
我々のモデルMM-Embedはマルチモーダル検索ベンチマークM-BEIR上で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-11-04T20:06:34Z) - Enhancing Long Context Performance in LLMs Through Inner Loop Query Mechanism [2.919891871101241]
変換器は入力サイズと計算複雑性の2次スケーリングを持つ。
Retrieval-augmented Generation (RAG)は、検索システムを使用することで、より長いコンテキストを処理できる。
インナーループメモリ拡張ツリー検索(ILM-TR)という新しい手法を導入する。
論文 参考訳(メタデータ) (2024-10-11T19:49:05Z) - Hierarchical Retrieval-Augmented Generation Model with Rethink for Multi-hop Question Answering [24.71247954169364]
マルチホップ質問回答 (Multi-hop Question Answering, QA) は、複雑な質問を解決するために複数の情報を統合することで複雑な推論を必要とする。
既存のQAシステムは、時代遅れの情報、コンテキストウィンドウの長さ制限、精度-量トレードオフといった課題に直面する。
本稿では,Decomposer,Definer,Retriever,Filter,Summarizerの5つのキーモジュールからなる,階層型検索拡張生成モデル(HiRAG)を提案する。
論文 参考訳(メタデータ) (2024-08-20T09:29:31Z) - Ask Optimal Questions: Aligning Large Language Models with Retriever's
Preference in Conversational Search [25.16282868262589]
RetPOは、ターゲット検索システムの好みに合わせて検索クエリを再構成するための言語モデル(LM)を最適化するように設計されている。
我々は、12Kの会話で410K以上のクエリを書き換えるRetrievers' Feedbackと呼ばれる大規模なデータセットを構築した。
このモデルにより,最近の2つの対話型検索ベンチマークにおいて,最先端の性能が得られた。
論文 参考訳(メタデータ) (2024-02-19T04:41:31Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
ゼロショットシナリオにおける大規模検索に大規模言語モデル(LLM)を適用するための簡単な手法を提案する。
我々の手法であるRetriever(LameR)は,LLM以外のニューラルモデルに基づいて構築された言語モデルである。
論文 参考訳(メタデータ) (2023-04-27T14:45:55Z) - Enhancing Multi-modal and Multi-hop Question Answering via Structured
Knowledge and Unified Retrieval-Generation [33.56304858796142]
マルチモーダルなマルチホップ質問応答は、異なるモーダルから複数の入力ソースを推論することで質問に答える。
既存の手法は、しばしば別々に証拠を検索し、その後言語モデルを使用して、得られた証拠に基づいて回答を生成する。
本稿では,これらの問題に対処するため,構造化知識と統一検索生成(RG)アプローチを提案する。
論文 参考訳(メタデータ) (2022-12-16T18:12:04Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。