$I^2G$: Generating Instructional Illustrations via Text-Conditioned Diffusion
- URL: http://arxiv.org/abs/2505.16425v1
- Date: Thu, 22 May 2025 09:10:09 GMT
- Title: $I^2G$: Generating Instructional Illustrations via Text-Conditioned Diffusion
- Authors: Jing Bi, Pinxin Liu, Ali Vosoughi, Jiarui Wu, Jinxi He, Chenliang Xu,
- Abstract summary: We propose a language-driven framework that decomposing procedural text into coherent visual instructions.<n>Our approach models the linguistic structure of instructional content by coherence it into goal statements and sequential steps, then conditioning visual generation on these linguistic elements.<n>This work contributes to the growing body of research on grounding procedural language in visual content, with applications spanning education, task guidance, and multimodal language understanding.
- Score: 31.2362624526101
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The effective communication of procedural knowledge remains a significant challenge in natural language processing (NLP), as purely textual instructions often fail to convey complex physical actions and spatial relationships. We address this limitation by proposing a language-driven framework that translates procedural text into coherent visual instructions. Our approach models the linguistic structure of instructional content by decomposing it into goal statements and sequential steps, then conditioning visual generation on these linguistic elements. We introduce three key innovations: (1) a constituency parser-based text encoding mechanism that preserves semantic completeness even with lengthy instructions, (2) a pairwise discourse coherence model that maintains consistency across instruction sequences, and (3) a novel evaluation protocol specifically designed for procedural language-to-image alignment. Our experiments across three instructional datasets (HTStep, CaptainCook4D, and WikiAll) demonstrate that our method significantly outperforms existing baselines in generating visuals that accurately reflect the linguistic content and sequential nature of instructions. This work contributes to the growing body of research on grounding procedural language in visual content, with applications spanning education, task guidance, and multimodal language understanding.
Related papers
- DISRetrieval: Harnessing Discourse Structure for Long Document Retrieval [51.89673002051528]
DISRetrieval is a novel hierarchical retrieval framework that leverages linguistic discourse structure to enhance long document understanding.<n>Our studies confirm that discourse structure significantly enhances retrieval effectiveness across different document lengths and query types.
arXiv Detail & Related papers (2025-05-26T14:45:12Z) - Learning Language Structures through Grounding [8.437466837766895]
We consider a family of machine learning tasks that aim to learn language structures through grounding.
In Part I, we consider learning syntactic parses through visual grounding.
In Part II, we propose two execution-aware methods to map sentences into corresponding semantic structures.
In Part III, we propose methods that learn language structures from annotations in other languages.
arXiv Detail & Related papers (2024-06-14T02:21:53Z) - Coherent Zero-Shot Visual Instruction Generation [15.0521272616551]
This paper introduces a simple, training-free framework to tackle the issues of generating visual instructions.
Our approach systematically integrates text comprehension and image generation to ensure visual instructions are visually appealing.
Our experiments show that our approach can visualize coherent and visually pleasing instructions.
arXiv Detail & Related papers (2024-06-06T17:59:44Z) - Instruct-SCTG: Guiding Sequential Controlled Text Generation through
Instructions [42.67608830386934]
Instruct-SCTG is a sequential framework that harnesses instruction-tuned language models to generate structurally coherent text.
Our framework generates articles in a section-by-section manner, aligned with the desired human structure using natural language instructions.
arXiv Detail & Related papers (2023-12-19T16:20:49Z) - Automatic and Human-AI Interactive Text Generation [27.05024520190722]
This tutorial aims to provide an overview of the state-of-the-art natural language generation research.
Text-to-text generation tasks are more constrained in terms of semantic consistency and targeted language styles.
arXiv Detail & Related papers (2023-10-05T20:26:15Z) - Language-Oriented Communication with Semantic Coding and Knowledge
Distillation for Text-to-Image Generation [53.97155730116369]
We put forward a novel framework of language-oriented semantic communication (LSC)
In LSC, machines communicate using human language messages that can be interpreted and manipulated via natural language processing (NLP) techniques for SC efficiency.
We introduce three innovative algorithms: 1) semantic source coding (SSC), which compresses a text prompt into its key head words capturing the prompt's syntactic essence; 2) semantic channel coding ( SCC), that improves robustness against errors by substituting head words with their lenghthier synonyms; and 3) semantic knowledge distillation (SKD), that produces listener-customized prompts via in-context learning the listener's
arXiv Detail & Related papers (2023-09-20T08:19:05Z) - Fg-T2M: Fine-Grained Text-Driven Human Motion Generation via Diffusion
Model [11.873294782380984]
We propose a fine-grained method for generating high-quality, conditional human motion sequences supporting precise text description.
Our approach consists of two key components: 1) a linguistics-structure assisted module that constructs accurate and complete language feature to fully utilize text information; and 2) a context-aware progressive reasoning module that learns neighborhood and overall semantic linguistics features from shallow and deep graph neural networks to achieve a multi-step inference.
arXiv Detail & Related papers (2023-09-12T14:43:47Z) - Benchmarking Language Models for Code Syntax Understanding [79.11525961219591]
Pre-trained language models have demonstrated impressive performance in both natural language processing and program understanding.
In this work, we perform the first thorough benchmarking of the state-of-the-art pre-trained models for identifying the syntactic structures of programs.
Our findings point out key limitations of existing pre-training methods for programming languages, and suggest the importance of modeling code syntactic structures.
arXiv Detail & Related papers (2022-10-26T04:47:18Z) - The Whole Truth and Nothing But the Truth: Faithful and Controllable
Dialogue Response Generation with Dataflow Transduction and Constrained
Decoding [65.34601470417967]
We describe a hybrid architecture for dialogue response generation that combines the strengths of neural language modeling and rule-based generation.
Our experiments show that this system outperforms both rule-based and learned approaches in human evaluations of fluency, relevance, and truthfulness.
arXiv Detail & Related papers (2022-09-16T09:00:49Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Improving Disentangled Text Representation Learning with
Information-Theoretic Guidance [99.68851329919858]
discrete nature of natural language makes disentangling of textual representations more challenging.
Inspired by information theory, we propose a novel method that effectively manifests disentangled representations of text.
Experiments on both conditional text generation and text-style transfer demonstrate the high quality of our disentangled representation.
arXiv Detail & Related papers (2020-06-01T03:36:01Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.