MAFE R-CNN: Selecting More Samples to Learn Category-aware Features for Small Object Detection
- URL: http://arxiv.org/abs/2505.16442v1
- Date: Thu, 22 May 2025 09:30:09 GMT
- Title: MAFE R-CNN: Selecting More Samples to Learn Category-aware Features for Small Object Detection
- Authors: Yichen Li, Qiankun Liu, Zhenchao Jin, Jiuzhe Wei, Jing Nie, Ying Fu,
- Abstract summary: Small object detection in intricate environments has consistently represented a major challenge in the field of object detection.<n>In this paper, we identify that this difficulty stems from the detectors' inability to effectively learn discriminative features for objects of small size.<n>We propose the Multi-Clue Assignment and Feature Enhancement R-CNN, which integrates two pivotal components.
- Score: 21.402560040693558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Small object detection in intricate environments has consistently represented a major challenge in the field of object detection. In this paper, we identify that this difficulty stems from the detectors' inability to effectively learn discriminative features for objects of small size, compounded by the complexity of selecting high-quality small object samples during training, which motivates the proposal of the Multi-Clue Assignment and Feature Enhancement R-CNN.Specifically, MAFE R-CNN integrates two pivotal components.The first is the Multi-Clue Sample Selection (MCSS) strategy, in which the Intersection over Union (IoU) distance, predicted category confidence, and ground truth region sizes are leveraged as informative clues in the sample selection process. This methodology facilitates the selection of diverse positive samples and ensures a balanced distribution of object sizes during training, thereby promoting effective model learning.The second is the Category-aware Feature Enhancement Mechanism (CFEM), where we propose a simple yet effective category-aware memory module to explore the relationships among object features. Subsequently, we enhance the object feature representation by facilitating the interaction between category-aware features and candidate box features.Comprehensive experiments conducted on the large-scale small object dataset SODA validate the effectiveness of the proposed method. The code will be made publicly available.
Related papers
- Segment Concealed Objects with Incomplete Supervision [63.637733655439334]
Incompletely-Supervised Concealed Object (ISCOS) involves segmenting objects that seamlessly blend into their surrounding environments.<n>This task remains highly challenging due to the limited supervision provided by the incompletely annotated training data.<n>In this paper, we introduce the first unified method for ISCOS to address these challenges.
arXiv Detail & Related papers (2025-06-10T16:25:15Z) - Efficient Feature Fusion for UAV Object Detection [9.632727117779178]
Small objects, in particular, occupy small portions of images, making their accurate detection difficult.<n>Existing multi-scale feature fusion methods address these challenges by aggregating features across different resolutions.<n>We propose a novel feature fusion framework specifically designed for UAV object detection tasks.
arXiv Detail & Related papers (2025-01-29T20:39:16Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.<n>Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.<n>We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - Multilateral Cascading Network for Semantic Segmentation of Large-Scale Outdoor Point Clouds [6.253217784798542]
Multilateral Cascading Network (MCNet) designed to address this challenge.<n>MCNet comprises two key components: a Multilateral Cascading Attention Enhancement (MCAE) module, and a Point Cross Stage Partial (P-CSP) module.<n>Our results surpassed the current best result by 2.1% in overall mIoU and yielded an improvement of 15.9% on average for small-sample object categories.
arXiv Detail & Related papers (2024-09-21T02:23:01Z) - Toward Multi-class Anomaly Detection: Exploring Class-aware Unified Model against Inter-class Interference [67.36605226797887]
We introduce a Multi-class Implicit Neural representation Transformer for unified Anomaly Detection (MINT-AD)
By learning the multi-class distributions, the model generates class-aware query embeddings for the transformer decoder.
MINT-AD can project category and position information into a feature embedding space, further supervised by classification and prior probability loss functions.
arXiv Detail & Related papers (2024-03-21T08:08:31Z) - Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images [11.217630579076237]
Few-shot object detection (FSOD) has garnered significant research attention in the field of remote sensing.
We propose a novel FSOD method for remote sensing images called Few-shot Oriented object detection with Memorable Contrastive learning (FOMC)
Specifically, we employ oriented bounding boxes instead of traditional horizontal bounding boxes to learn a better feature representation for arbitrary-oriented aerial objects.
arXiv Detail & Related papers (2024-03-20T08:15:18Z) - Active Learning for Object Detection with Non-Redundant Informative
Sampling [1.7602289331729377]
Our strategy integrates uncertainty and diversity-based selection principles into a joint selection objective.
Our proposed NORIS algorithm quantifies the impact of training with a sample on the informativeness of other similar samples.
Our strategy achieves a 20% and 30% reduction in labeling costs compared to random selection for PASCAL-VOC and KITTI.
arXiv Detail & Related papers (2023-07-17T11:55:20Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
We propose a discoveryand-selection approach fused with multiple instance learning (DS-MIL)
Our proposed DS-MIL approach can consistently improve the baselines, reporting state-of-the-art performance.
arXiv Detail & Related papers (2021-10-18T07:06:57Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
We propose a classification-free Object Localization Network (OLN) which estimates the objectness of each region purely by how well the location and shape of a region overlaps with any ground-truth object.
This simple strategy learns generalizable objectness and outperforms existing proposals on cross-category generalization.
arXiv Detail & Related papers (2021-08-15T14:36:02Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - A Unified Object Motion and Affinity Model for Online Multi-Object
Tracking [127.5229859255719]
We propose a novel MOT framework that unifies object motion and affinity model into a single network, named UMA.
UMA integrates single object tracking and metric learning into a unified triplet network by means of multi-task learning.
We equip our model with a task-specific attention module, which is used to boost task-aware feature learning.
arXiv Detail & Related papers (2020-03-25T09:36:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.