CMRINet: Joint Groupwise Registration and Segmentation for Cardiac Function Quantification from Cine-MRI
- URL: http://arxiv.org/abs/2505.16452v2
- Date: Tue, 03 Jun 2025 12:52:32 GMT
- Title: CMRINet: Joint Groupwise Registration and Segmentation for Cardiac Function Quantification from Cine-MRI
- Authors: Mohamed S. Elmahdy, Marius Staring, Patrick J. H. de Koning, Samer Alabed, Mahan Salehi, Faisal Alandejani, Michael Sharkey, Ziad Aldabbagh, Andrew J. Swift, Rob J. van der Geest,
- Abstract summary: We propose an end-to-end deep learning (DL) model that jointly estimates groupwise (GW) registration and segmentation for cardiac cine-MRI images.<n>A comparison with conventional GW registration using elastix and two DL-based methods showed that the proposed model improved performance and substantially reduced computation time.
- Score: 1.2209275734872431
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and efficient quantification of cardiac function is essential for the estimation of prognosis of cardiovascular diseases (CVDs). One of the most commonly used metrics for evaluating cardiac pumping performance is left ventricular ejection fraction (LVEF). However, LVEF can be affected by factors such as inter-observer variability and varying pre-load and after-load conditions, which can reduce its reproducibility. Additionally, cardiac dysfunction may not always manifest as alterations in LVEF, such as in heart failure and cardiotoxicity diseases. An alternative measure that can provide a relatively load-independent quantitative assessment of myocardial contractility is myocardial strain and strain rate. By using LVEF in combination with myocardial strain, it is possible to obtain a thorough description of cardiac function. Automated estimation of LVEF and other volumetric measures from cine-MRI sequences can be achieved through segmentation models, while strain calculation requires the estimation of tissue displacement between sequential frames, which can be accomplished using registration models. These tasks are often performed separately, potentially limiting the assessment of cardiac function. To address this issue, in this study we propose an end-to-end deep learning (DL) model that jointly estimates groupwise (GW) registration and segmentation for cardiac cine-MRI images. The proposed anatomically-guided Deep GW network was trained and validated on a large dataset of 4-chamber view cine-MRI image series of 374 subjects. A quantitative comparison with conventional GW registration using elastix and two DL-based methods showed that the proposed model improved performance and substantially reduced computation time.
Related papers
- Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG [40.407824759778784]
PTACL (Patient and Temporal Alignment Contrastive Learning) is a multimodal contrastive learning framework that enhances ECG representations by integrating-temporal information from CMR.<n>We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank.<n>Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG.
arXiv Detail & Related papers (2025-06-24T17:19:39Z) - Cardiac MRI Semantic Segmentation for Ventricles and Myocardium using Deep Learning [0.0]
Automated noninvasive cardiac diagnosis plays a critical role in the early detection of cardiac disorders.<n>We present a model to improve semantic segmentation of cardiac images.
arXiv Detail & Related papers (2025-04-18T00:54:30Z) - Q-PART: Quasi-Periodic Adaptive Regression with Test-time Training for Pediatric Left Ventricular Ejection Fraction Regression [45.69922532213079]
We address the challenge of adaptive pediatric Left Ventricular Ejection Fraction (LVEF) assessment.<n>We propose a novel textbfQuasi-textbfPeriodic textbfAdaptive textbfRegression with textbfTest-time Training (Q-PART) framework.
arXiv Detail & Related papers (2025-03-06T06:24:51Z) - Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
This paper introduces a lightweight end-to-end Cardiac Ultrasound frame-to-volume Registration network, termed CU-Reg.<n>We use epicardium prompt-guided anatomical clues to reinforce the interaction of 2D sparse and 3D dense features, followed by a voxel-wise local-global aggregation of enhanced features.
arXiv Detail & Related papers (2024-06-20T17:47:30Z) - Deep Learning for Automatic Strain Quantification in Arrhythmogenic
Right Ventricular Cardiomyopathy [0.0]
Quantification of cardiac motion with cine Cardiac Magnetic Resonance Imaging (CMRI) is an integral part of arrhythmogenic right ventricular cardiomyopathy (ARVC) diagnosis.
We develop a method to automatically assess cardiac motion using Implicit Neural Representations (INRs) and a deep learning approach.
Our results show that inter-slice alignment and generation of super-resolved volumes combined with joint analysis of the two cardiac views, notably improves registration performance.
arXiv Detail & Related papers (2023-11-24T12:55:36Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
Existing video-based methods do not pay much attention to the left ventricular region, nor the left ventricular changes caused by motion.
We propose a semi-supervised auxiliary learning paradigm with a left ventricular segmentation task, which contributes to the representation learning for the left ventricular region.
Our approach achieves state-of-the-art performance on the Stanford dataset with an improvement of 0.22 MAE, 0.26 RMSE, and 1.9% $R2$.
arXiv Detail & Related papers (2023-10-09T05:57:01Z) - M(otion)-mode Based Prediction of Ejection Fraction using
Echocardiograms [13.112371567924802]
We propose using the M(otion)-mode of echocardiograms for estimating the left ventricular ejection fraction (EF) and classifying cardiomyopathy.
We generate multiple artificial M-mode images from a single echocardiogram and combine them using off-the-shelf model architectures.
Our experiments show that the supervised setting converges with only ten modes and is comparable to the baseline method.
arXiv Detail & Related papers (2023-09-07T15:00:58Z) - Towards Enabling Cardiac Digital Twins of Myocardial Infarction Using
Deep Computational Models for Inverse Inference [6.447210290674733]
We present a novel deep computational model, comprising a dual-branch variational autoencoder and an inference model, to infer infarct location and distribution from the simulated QRS.
The sensitivity analysis enhances our understanding of the complex relationship between infarct characteristics and electrophysiological features.
arXiv Detail & Related papers (2023-07-10T08:54:12Z) - Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
We propose a novel method to generate a realistic numerical phantom of myocardial microstructure.
In-silico tissue models enable evaluating quantitative models of magnetic resonance imaging.
arXiv Detail & Related papers (2022-08-22T22:01:44Z) - Spatio-temporal Multi-task Learning for Cardiac MRI Left Ventricle
Quantification [6.887389908965403]
We propose a learning-temporal multi-task approach to obtain a complete set of measurements of cardiac left ventricle (LV) morphology.
We first segment LVs using an encoder-decoder network and then introduce a framework to regress 11 LV indices and classify the cardiac phase.
The proposed model is based on the 3D-temporal convolutions, which extract spatial and features from MR images.
arXiv Detail & Related papers (2020-12-24T17:48:35Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.