論文の概要: Find the Fruit: Designing a Zero-Shot Sim2Real Deep RL Planner for Occlusion Aware Plant Manipulation
- arxiv url: http://arxiv.org/abs/2505.16547v1
- Date: Thu, 22 May 2025 11:37:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.25735
- Title: Find the Fruit: Designing a Zero-Shot Sim2Real Deep RL Planner for Occlusion Aware Plant Manipulation
- Title(参考訳): 植物操作を意識したゼロショットSim2リアル深部RLプランナの設計
- Authors: Nitesh Subedi, Hsin-Jung Yang, Devesh K. Jha, Soumik Sarkar,
- Abstract要約: 本稿では, 乱雑な植物環境におけるロボット操作のためのエンドツーエンドの深層強化学習フレームワークを提案する。
ロボット制御からキネマティック計画問題を分離し、訓練されたポリシーに対するゼロショットsim2real転送を簡素化する。
本研究は, 各種初期条件における実地試験において, 最大86.7%の成果が得られたことを実証した。
- 参考スコア(独自算出の注目度): 13.987904621536256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an end-to-end deep reinforcement learning (RL) framework for occlusion-aware robotic manipulation in cluttered plant environments. Our approach enables a robot to interact with a deformable plant to reveal hidden objects of interest, such as fruits, using multimodal observations. We decouple the kinematic planning problem from robot control to simplify zero-shot sim2real transfer for the trained policy. Our results demonstrate that the trained policy, deployed using our framework, achieves up to 86.7% success in real-world trials across diverse initial conditions. Our findings pave the way toward autonomous, perception-driven agricultural robots that intelligently interact with complex foliage plants to "find the fruit" in challenging occluded scenarios, without the need for explicitly designed geometric and dynamic models of every plant scenario.
- Abstract(参考訳): 本稿では, 乱雑な植物環境における隠蔽型ロボット操作のための, エンドツーエンドの深部強化学習(RL)フレームワークを提案する。
本手法により, 変形可能な植物と相互作用し, 果実などの隠れた対象をマルチモーダル観察により明らかにすることができる。
ロボット制御からキネマティック計画問題を分離し、訓練されたポリシーに対するゼロショットsim2real転送を簡素化する。
本研究の結果から,本フレームワークを応用したトレーニングポリシは,さまざまな初期条件において,実世界の試験において最大86.7%の成功を収めていることがわかった。
我々の研究結果は、複雑な葉植物とインテリジェントに相互作用し、あらゆる植物シナリオの幾何学的・動的モデルを明示的に設計することなく、難解なシナリオで「果物を仕上げる」ための自律的認識駆動型農業ロボットへの道を開いた。
関連論文リスト
- FLEX: A Framework for Learning Robot-Agnostic Force-based Skills Involving Sustained Contact Object Manipulation [9.292150395779332]
本稿では,力空間におけるオブジェクト中心の操作ポリシーを学習するための新しいフレームワークを提案する。
提案手法は, 動作空間を単純化し, 不要な探索を低減し, シミュレーションオーバーヘッドを低減させる。
評価の結果,本手法はベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2025-03-17T17:49:47Z) - Polaris: Open-ended Interactive Robotic Manipulation via Syn2Real Visual Grounding and Large Language Models [53.22792173053473]
我々はPolarisという対話型ロボット操作フレームワークを紹介した。
ポラリスはGPT-4と接地された視覚モデルを利用して知覚と相互作用を統合する。
本稿では,Syn2Real(Synthetic-to-Real)ポーズ推定パイプラインを提案する。
論文 参考訳(メタデータ) (2024-08-15T06:40:38Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
我々は、ゼロショットロボット操作を可能にする汎用的な目標条件ポリシーを学習することを目指している。
私たちのフレームワークであるTrack2Actは、ゴールに基づいて将来のタイムステップで画像内のポイントがどのように動くかを予測する。
学習したトラック予測を残留ポリシーと組み合わせることで,多種多様な汎用ロボット操作が可能となることを示す。
論文 参考訳(メタデータ) (2024-05-02T17:56:55Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
強化学習はそのようなロボットコントローラを開発するための強力なフレームワークである。
分類分布を用いたマルチモーダル探索手法を提案する。
学習したポリシは外部の障害や観測ノイズに対して堅牢であり、複数のプッシュ器でタスクにスケールできることが示される。
論文 参考訳(メタデータ) (2023-08-04T16:55:00Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - SAGCI-System: Towards Sample-Efficient, Generalizable, Compositional,
and Incremental Robot Learning [41.19148076789516]
上記の4つの要件を満たすために,SAGCIシステムと呼ばれる体系的な学習フレームワークを導入する。
本システムはまず,ロボットの手首に搭載されたカメラによって収集された生点雲を入力とし,URDFに代表される周囲環境の初期モデリングを生成する。
そのロボットは、対話的な知覚を利用して環境と対話し、URDFのオンライン検証と修正を行う。
論文 参考訳(メタデータ) (2021-11-29T16:53:49Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - DeepSym: Deep Symbol Generation and Rule Learning from Unsupervised
Continuous Robot Interaction for Planning [1.3854111346209868]
ロボットアームハンドシステムは、プッシュとスタックアクションから「ロータブル」、「インサータブル」、「ラーガー・サン」と解釈できるシンボルを学習する。
本システムは,ロボットアームハンドシステムにおいて,その動作から「回転可能」,「不可能」,「大きい」と解釈可能なシンボルを学習する物理に基づく3次元シミュレーション環境で検証する。
論文 参考訳(メタデータ) (2020-12-04T11:26:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。