MEgoHand: Multimodal Egocentric Hand-Object Interaction Motion Generation
- URL: http://arxiv.org/abs/2505.16602v1
- Date: Thu, 22 May 2025 12:37:47 GMT
- Title: MEgoHand: Multimodal Egocentric Hand-Object Interaction Motion Generation
- Authors: Bohan Zhou, Yi Zhan, Zhongbin Zhang, Zongqing Lu,
- Abstract summary: MEgoHand is a framework that synthesizes physically plausible hand-object interactions from egocentric RGB, text, and initial hand pose.<n>It achieves substantial reductions in wrist translation error and joint rotation error, highlighting its capacity to accurately model fine-grained hand joint structures.
- Score: 28.75149480374178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Egocentric hand-object motion generation is crucial for immersive AR/VR and robotic imitation but remains challenging due to unstable viewpoints, self-occlusions, perspective distortion, and noisy ego-motion. Existing methods rely on predefined 3D object priors, limiting generalization to novel objects, which restricts their generalizability to novel objects. Meanwhile, recent multimodal approaches suffer from ambiguous generation from abstract textual cues, intricate pipelines for modeling 3D hand-object correlation, and compounding errors in open-loop prediction. We propose MEgoHand, a multimodal framework that synthesizes physically plausible hand-object interactions from egocentric RGB, text, and initial hand pose. MEgoHand introduces a bi-level architecture: a high-level "cerebrum" leverages a vision language model (VLM) to infer motion priors from visual-textual context and a monocular depth estimator for object-agnostic spatial reasoning, while a low-level DiT-based flow-matching policy generates fine-grained trajectories with temporal orthogonal filtering to enhance stability. To address dataset inconsistency, we design a dataset curation paradigm with an Inverse MANO Retargeting Network and Virtual RGB-D Renderer, curating a unified dataset of 3.35M RGB-D frames, 24K interactions, and 1.2K objects. Extensive experiments across five in-domain and two cross-domain datasets demonstrate the effectiveness of MEgoHand, achieving substantial reductions in wrist translation error (86.9%) and joint rotation error (34.1%), highlighting its capacity to accurately model fine-grained hand joint structures and generalize robustly across diverse scenarios.
Related papers
- Learning Video Generation for Robotic Manipulation with Collaborative Trajectory Control [72.00655365269]
We present RoboMaster, a novel framework that models inter-object dynamics through a collaborative trajectory formulation.<n>Unlike prior methods that decompose objects, our core is to decompose the interaction process into three sub-stages: pre-interaction, interaction, and post-interaction.<n>Our method outperforms existing approaches, establishing new state-of-the-art performance in trajectory-controlled video generation for robotic manipulation.
arXiv Detail & Related papers (2025-06-02T17:57:06Z) - TIGeR: Text-Instructed Generation and Refinement for Template-Free Hand-Object Interaction [43.61297194416115]
We propose a new Text-Instructed Generation and Refinement (TIGeR) framework to steer the object shape refinement and pose estimation.<n>We use a two-stage framework: a text-instructed prior generation and vision-guided refinement.<n>TIGeR achieves competitive performance, i.e., 1.979 and 5.468 object Chamfer distance on the widely-used Dex-YCB and Obman datasets.
arXiv Detail & Related papers (2025-06-01T10:56:16Z) - SIGHT: Synthesizing Image-Text Conditioned and Geometry-Guided 3D Hand-Object Trajectories [124.24041272390954]
Modeling hand-object interaction priors holds significant potential to advance robotic and embodied AI systems.<n>We introduce SIGHT, a novel task focused on generating realistic and physically plausible 3D hand-object interaction trajectories from a single image.<n>We propose SIGHT-Fusion, a novel diffusion-based image-text conditioned generative model that tackles this task by retrieving the most similar 3D object mesh from a database.
arXiv Detail & Related papers (2025-03-28T20:53:20Z) - Learning to Align and Refine: A Foundation-to-Diffusion Framework for Occlusion-Robust Two-Hand Reconstruction [50.952228546326516]
Two-hand reconstruction from monocular images faces persistent challenges due to complex and dynamic hand postures.<n>Existing approaches struggle with such alignment issues, often resulting in misalignment and penetration artifacts.<n>We propose a dual-stage Foundation-to-Diffusion framework that precisely align 2D prior guidance from vision foundation models.
arXiv Detail & Related papers (2025-03-22T14:42:27Z) - HOGSA: Bimanual Hand-Object Interaction Understanding with 3D Gaussian Splatting Based Data Augmentation [29.766317710266765]
We propose a new 3D Gaussian Splatting based data augmentation framework for bimanual hand-object interaction.<n>We use mesh-based 3DGS to model objects and hands, and to deal with the rendering blur problem due to multi-resolution input images used.<n>We extend the single hand grasping pose optimization module for the bimanual hand object to generate various poses of bimanual hand-object interaction.
arXiv Detail & Related papers (2025-01-06T08:48:17Z) - 3D Hand Reconstruction via Aggregating Intra and Inter Graphs Guided by
Prior Knowledge for Hand-Object Interaction Scenario [8.364378460776832]
We propose a 3D hand reconstruction network combining the benefits of model-based and model-free approaches to balance accuracy and physical plausibility for hand-object interaction scenario.
Firstly, we present a novel MANO pose parameters regression module from 2D joints directly, which avoids the process of highly nonlinear mapping from abstract image feature.
arXiv Detail & Related papers (2024-03-04T05:11:26Z) - SM$^3$: Self-Supervised Multi-task Modeling with Multi-view 2D Images
for Articulated Objects [24.737865259695006]
We propose a self-supervised interaction perception method, referred to as SM$3$, to model articulated objects.
By constructing 3D geometries and textures from the captured 2D images, SM$3$ achieves integrated optimization of movable part and joint parameters.
Evaluations demonstrate that SM$3$ surpasses existing benchmarks across various categories and objects, while its adaptability in real-world scenarios has been thoroughly validated.
arXiv Detail & Related papers (2024-01-17T11:15:09Z) - D-SCo: Dual-Stream Conditional Diffusion for Monocular Hand-Held Object Reconstruction [74.49121940466675]
We introduce centroid-fixed dual-stream conditional diffusion for monocular hand-held object reconstruction.
First, to avoid the object centroid from deviating, we utilize a novel hand-constrained centroid fixing paradigm.
Second, we introduce a dual-stream denoiser to semantically and geometrically model hand-object interactions.
arXiv Detail & Related papers (2023-11-23T20:14:50Z) - MOHO: Learning Single-view Hand-held Object Reconstruction with
Multi-view Occlusion-Aware Supervision [75.38953287579616]
We present a novel framework to exploit Multi-view Occlusion-aware supervision from hand-object videos for Hand-held Object reconstruction.
We tackle two predominant challenges in such setting: hand-induced occlusion and object's self-occlusion.
Experiments on HO3D and DexYCB datasets demonstrate 2D-supervised MOHO gains superior results against 3D-supervised methods by a large margin.
arXiv Detail & Related papers (2023-10-18T03:57:06Z) - Joint Hand-object 3D Reconstruction from a Single Image with
Cross-branch Feature Fusion [78.98074380040838]
We propose to consider hand and object jointly in feature space and explore the reciprocity of the two branches.
We employ an auxiliary depth estimation module to augment the input RGB image with the estimated depth map.
Our approach significantly outperforms existing approaches in terms of the reconstruction accuracy of objects.
arXiv Detail & Related papers (2020-06-28T09:50:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.