Unsupervised Network Anomaly Detection with Autoencoders and Traffic Images
- URL: http://arxiv.org/abs/2505.16650v1
- Date: Thu, 22 May 2025 13:19:30 GMT
- Title: Unsupervised Network Anomaly Detection with Autoencoders and Traffic Images
- Authors: Michael Neri, Sara Baldoni,
- Abstract summary: We propose an image-based representation of network traffic which allows to realize a compact summary of the current network conditions.<n>We also present an unsupervised learning approach which effectively detects the presence of anomalies.
- Score: 1.0589208420411014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the recent increase in the number of connected devices, the need to promptly detect security issues is emerging. Moreover, the high number of communication flows creates the necessity of processing huge amounts of data. Furthermore, the connected devices are heterogeneous in nature, having different computational capacities. For this reason, in this work we propose an image-based representation of network traffic which allows to realize a compact summary of the current network conditions with 1-second time windows. The proposed representation highlights the presence of anomalies thus reducing the need for complex processing architectures. Finally, we present an unsupervised learning approach which effectively detects the presence of anomalies. The code and the dataset are available at https://github.com/michaelneri/image-based-network-traffic-anomaly-detection.
Related papers
- IDGraphs: Intrusion Detection and Analysis Using Stream Compositing [8.0129134921247]
IDGraphs is an interactive visualization system for intrusion detection.<n>We apply IDGraphs to a real network router data-set with 179M flow-level records representing a total traffic of 1.16TB.<n>The system successfully detects and analyzes a variety of attacks and anomalies.
arXiv Detail & Related papers (2025-06-26T16:08:20Z) - Graph Neural Networks Based Anomalous RSSI Detection [0.196629787330046]
This paper presents a novel method for detecting anomalies in wireless links using graph neural networks.<n>The proposed approach involves converting time series data into graphs and training a new graph neural network architecture.
arXiv Detail & Related papers (2025-05-19T09:16:32Z) - Research on Cloud Platform Network Traffic Monitoring and Anomaly Detection System based on Large Language Models [5.524069089627854]
This paper introduces a large language model (LLM)-based network traffic monitoring and anomaly detection system.<n>A pre-trained large language model analyzes and predicts the probable network traffic, and an anomaly detection layer considers temporality and context.<n>Results show that the designed model outperforms traditional methods in detection accuracy and computational efficiency.
arXiv Detail & Related papers (2025-04-22T07:42:07Z) - Multi-view Correlation-aware Network Traffic Detection on Flow Hypergraph [5.64836465356865]
We propose a multi-view correlation-aware framework named FlowID for network traffic detection.<n>FlowID captures multi-view traffic features via temporal and interaction awareness, while a hypergraph encoder further explores higher-order relationships between flows.<n>We show that FlowID significantly outperforms existing methods in accuracy, robustness, and generalization across diverse network scenarios.
arXiv Detail & Related papers (2025-01-15T06:17:06Z) - RIDE: Real-time Intrusion Detection via Explainable Machine Learning
Implemented in a Memristor Hardware Architecture [24.824596231020585]
We propose a packet-level network intrusion detection solution that makes use of Recurrent Autoencoders to integrate an arbitrary-length sequence of packets into a more compact joint feature embedding.
We show that our approach leads to an extremely efficient, real-time solution with high detection accuracy at the packet level.
arXiv Detail & Related papers (2023-11-27T17:30:19Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
We present STEMD, a novel end-to-end framework that enhances the DETR-like paradigm for multi-frame 3D object detection.
First, to model the inter-object spatial interaction and complex temporal dependencies, we introduce the spatial-temporal graph attention network.
Finally, it poses a challenge for the network to distinguish between the positive query and other highly similar queries that are not the best match.
arXiv Detail & Related papers (2023-07-01T13:53:14Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
Current deepfake generation methods leave discriminative artifacts in the frequency spectrum of fake images and videos.
We present a novel approach, termed as MD-CSDNetwork, for combining the features in the spatial and frequency domains to mine a shared discriminative representation.
arXiv Detail & Related papers (2021-09-15T14:11:53Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
Image splicing forgery detection is a global binary classification task that distinguishes the tampered and non-tampered regions by image fingerprints.
We propose a novel network called dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs an unfixed encoder and a fixed encoder.
In an experimental comparison study of D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in image-level and pixel-level detection.
arXiv Detail & Related papers (2020-12-03T10:54:02Z) - Vision-Aided Dynamic Blockage Prediction for 6G Wireless Communication
Networks [11.626009272815816]
This paper proposes a novel solution that proactively predicts textitdynamic link blockages.
It learns from observed sequences of RGB images and beamforming vectors how to predict possible future link blockages.
It scores a link-blockage prediction accuracy in the neighborhood of 86%, a performance that is unlikely to be matched without utilizing visual data.
arXiv Detail & Related papers (2020-06-17T14:37:38Z) - Event-based Asynchronous Sparse Convolutional Networks [54.094244806123235]
Event cameras are bio-inspired sensors that respond to per-pixel brightness changes in the form of asynchronous and sparse "events"
We present a general framework for converting models trained on synchronous image-like event representations into asynchronous models with identical output.
We show both theoretically and experimentally that this drastically reduces the computational complexity and latency of high-capacity, synchronous neural networks.
arXiv Detail & Related papers (2020-03-20T08:39:49Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.