Zero-Shot Hyperspectral Pansharpening Using Hysteresis-Based Tuning for Spectral Quality Control
- URL: http://arxiv.org/abs/2505.16658v2
- Date: Tue, 15 Jul 2025 08:41:18 GMT
- Title: Zero-Shot Hyperspectral Pansharpening Using Hysteresis-Based Tuning for Spectral Quality Control
- Authors: Giuseppe Guarino, Matteo Ciotola, Gemine Vivone, Giovanni Poggi, Giuseppe Scarpa,
- Abstract summary: Methods for hyperspectral pansharpening often overlook the unique challenges posed by hyperspectral data fusion.<n>A single lightweight neural network is used, with weights that adapt on the fly to each band.<n>The proposed method is fully unsupervised, with no prior training on external data, flexible, and low-complexity.
- Score: 5.231219025536678
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Hyperspectral pansharpening has received much attention in recent years due to technological and methodological advances that open the door to new application scenarios. However, research on this topic is only now gaining momentum. The most popular methods are still borrowed from the more mature field of multispectral pansharpening and often overlook the unique challenges posed by hyperspectral data fusion, such as i) the very large number of bands, ii) the overwhelming noise in selected spectral ranges, iii) the significant spectral mismatch between panchromatic and hyperspectral components, iv) a typically high resolution ratio. Imprecise data modeling especially affects spectral fidelity. Even state-of-the-art methods perform well in certain spectral ranges and much worse in others, failing to ensure consistent quality across all bands, with the risk of generating unreliable results. Here, we propose a hyperspectral pansharpening method that explicitly addresses this problem and ensures uniform spectral quality. To this end, a single lightweight neural network is used, with weights that adapt on the fly to each band. During fine-tuning, the spatial loss is turned on and off to ensure a fast convergence of the spectral loss to the desired level, according to a hysteresis-like dynamic. Furthermore, the spatial loss itself is appropriately redefined to account for nonlinear dependencies between panchromatic and spectral bands. Overall, the proposed method is fully unsupervised, with no prior training on external data, flexible, and low-complexity. Experiments on a recently published benchmarking toolbox show that it ensures excellent sharpening quality, competitive with the state-of-the-art, consistently across all bands. The software code and the full set of results are shared online on https://github.com/giu-guarino/rho-PNN.
Related papers
- SpectrumFM: A New Paradigm for Spectrum Cognition [65.65474629224558]
We propose a spectrum foundation model, termed SpectrumFM, which provides a new paradigm for spectrum cognition.<n>An innovative spectrum encoder that exploits the convolutional neural networks is proposed to effectively capture both fine-grained local signal structures and high-level global dependencies in the spectrum data.<n>Two novel self-supervised learning tasks, namely masked reconstruction and next-slot signal prediction, are developed for pre-training SpectrumFM, enabling the model to learn rich and transferable representations.
arXiv Detail & Related papers (2025-08-02T14:40:50Z) - LSCD: Lomb-Scargle Conditioned Diffusion for Time series Imputation [55.800319453296886]
Time series with missing or irregularly sampled data are a persistent challenge in machine learning.<n>We introduce a different Lombiable--Scargle layer that enables a reliable computation of the power spectrum of irregularly sampled data.
arXiv Detail & Related papers (2025-06-20T14:48:42Z) - Correct Estimation of Higher-Order Spectra: From Theoretical Challenges to Practical Multi-Channel Implementation in SignalSnap [0.0]
Higher-order spectra offer powerful methods for solving critical problems in signal processing and data analysis.<n>Their practical use has remained limited due to unresolved mathematical issues in spectral estimation.<n>We introduce quasi-polyspectra to uncover non-stationary, time-dependent higher-order features.<n>We implement these new estimators in SignalSnap, an open-source GPU-accelerated library capable of efficiently analyzing datasets exceeding hundreds of gigabytes within minutes.
arXiv Detail & Related papers (2025-05-02T12:36:30Z) - Towards Anomaly-Aware Pre-Training and Fine-Tuning for Graph Anomaly Detection [59.042018542376596]
Graph anomaly detection (GAD) has garnered increasing attention in recent years, yet remains challenging due to two key factors.<n>Anomaly-Aware Pre-Training and Fine-Tuning (APF) is a framework to mitigate the challenges in GAD.<n> Comprehensive experiments on 10 benchmark datasets validate the superior performance of APF in comparison to state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-19T09:57:35Z) - Hyperspectral Pansharpening: Critical Review, Tools and Future Perspectives [23.833438162665715]
Hyperspectral pansharpening consists of fusing a high-resolution panchromatic band and a low-resolution hyperspectral image to obtain a new image with high resolution in both the spatial and spectral domains.<n>This paper attempts to address the lack of a comprehensive framework for the rapid development and accurate evaluation of new methods.
arXiv Detail & Related papers (2024-07-01T15:10:50Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation [4.246657212475299]
We propose a new deep learning method for hyperspectral pansharpening.
It inherits a simple single-band unsupervised pansharpening model nested in a sequential band-wise adaptive scheme.
The proposed method achieves very good results on our datasets, outperforming both traditional and deep learning reference methods.
arXiv Detail & Related papers (2023-11-11T08:53:54Z) - Residual Degradation Learning Unfolding Framework with Mixing Priors
across Spectral and Spatial for Compressive Spectral Imaging [29.135848304404533]
coded aperture snapshot spectral imaging (CASSI) is proposed.
core problem of the CASSI system is to recover the reliable and fine underlying 3D spectral cube from the 2D measurement.
We propose a Residual Degradation Learning Unfolding Framework (RDLUF) which bridges the gap between the sensing matrix and the degradation process.
arXiv Detail & Related papers (2022-11-13T12:31:49Z) - Spectral Splitting and Aggregation Network for Hyperspectral Face
Super-Resolution [82.59267937569213]
High-resolution (HR) hyperspectral face image plays an important role in face related computer vision tasks under uncontrolled conditions.
In this paper, we investigate how to adapt the deep learning techniques to hyperspectral face image super-resolution.
We present a spectral splitting and aggregation network (SSANet) for HFSR with limited training samples.
arXiv Detail & Related papers (2021-08-31T02:13:00Z) - Spatial-Spectral Feedback Network for Super-Resolution of Hyperspectral
Imagery [11.76638109321532]
High-dimensional and complex spectral patterns in hyperspectral image make it difficult to explore spatial information and spectral information among bands simultaneously.
The number of available hyperspectral training samples is extremely small, which can easily lead to overfitting when training a deep neural network.
We propose a novel Spatial-Spectral Feedback Network (SSFN) to refine low-level representations among local spectral bands with high-level information from global spectral bands.
arXiv Detail & Related papers (2021-03-07T13:28:48Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
We propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design.
Our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.
arXiv Detail & Related papers (2020-11-05T11:34:12Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
Cross-modality distribution of spatial and spectral information makes the problem challenging.
We propose a novel textitlightweight deep neural network-based framework, namely PZRes-Net.
Our framework learns a high resolution and textitzero-centric residual image, which contains high-frequency spatial details of the scene.
arXiv Detail & Related papers (2020-06-18T06:32:11Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.