Correct Estimation of Higher-Order Spectra: From Theoretical Challenges to Practical Multi-Channel Implementation in SignalSnap
- URL: http://arxiv.org/abs/2505.01231v2
- Date: Wed, 23 Jul 2025 11:38:25 GMT
- Title: Correct Estimation of Higher-Order Spectra: From Theoretical Challenges to Practical Multi-Channel Implementation in SignalSnap
- Authors: Markus Sifft, Armin Ghorbanietemad, Fabian Wagner, Daniel Hägele,
- Abstract summary: Higher-order spectra offer powerful methods for solving critical problems in signal processing and data analysis.<n>Their practical use has remained limited due to unresolved mathematical issues in spectral estimation.<n>We introduce quasi-polyspectra to uncover non-stationary, time-dependent higher-order features.<n>We implement these new estimators in SignalSnap, an open-source GPU-accelerated library capable of efficiently analyzing datasets exceeding hundreds of gigabytes within minutes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Higher-order spectra (Brillinger's polyspectra) offer powerful methods for solving critical problems in signal processing and data analysis. Despite their significant potential, their practical use has remained limited due to unresolved mathematical issues in spectral estimation, including the absence of unbiased and consistent estimators and the high computational cost associated with evaluating multidimensional spectra. Consequently, existing tools frequently produce artifacts, no existing software library correctly implements Brillinger's cumulant-based trispectrum, or fail to scale effectively to real-world data volumes, leaving crucial applications like multi-detector spectral analysis largely unexplored. In this paper, we revisit higher-order spectra from a modern perspective, addressing the root causes of their historical underuse. We reformulate higher-order spectral estimation using recently derived multivariate k-statistics, yielding unbiased and consistent estimators that eliminate spurious artifacts and precisely align with Brillinger's theoretical definitions. Our methodology covers single- and multi-channel spectral analysis up to the bispectrum (third order) and trispectrum (fourth order), enabling robust investigations of inter-frequency coupling, non-Gaussian behavior, and time-reversal symmetry breaking. Additionally, we introduce quasi-polyspectra to uncover non-stationary, time-dependent higher-order features. We implement these new estimators in SignalSnap, an open-source GPU-accelerated library capable of efficiently analyzing datasets exceeding hundreds of gigabytes within minutes. In applications such as continuous quantum measurements, SignalSnap's rigorous estimators enable precise quantitative matching between experimental data and theoretical models.
Related papers
- LSCD: Lomb-Scargle Conditioned Diffusion for Time series Imputation [55.800319453296886]
Time series with missing or irregularly sampled data are a persistent challenge in machine learning.<n>We introduce a different Lombiable--Scargle layer that enables a reliable computation of the power spectrum of irregularly sampled data.
arXiv Detail & Related papers (2025-06-20T14:48:42Z) - Zero-Shot Hyperspectral Pansharpening Using Hysteresis-Based Tuning for Spectral Quality Control [5.231219025536678]
Methods for hyperspectral pansharpening often overlook the unique challenges posed by hyperspectral data fusion.<n>A single lightweight neural network is used, with weights that adapt on the fly to each band.<n>The proposed method is fully unsupervised, with no prior training on external data, flexible, and low-complexity.
arXiv Detail & Related papers (2025-05-22T13:24:24Z) - CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding.<n> variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies.<n>We introduce $textbfCARL$, a model for $textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$ across RGB, multispectral, and hyperspectral imaging modalities.
arXiv Detail & Related papers (2025-04-27T13:06:40Z) - Disentangling Modes and Interference in the Spectrogram of Multicomponent Signals [4.570664073341981]
In this paper, we investigate how the spectrogram of multicomponent signals can be decomposed into a mode part and an interference part.<n>We explore two approaches: (i) a variational method inspired by texture-geometry decomposition in image processing, and (ii) a supervised learning approach using a U-Net architecture.<n> Numerical experiments illustrate the advantages and limitations of both approaches for spectrogram decomposition, highlighting their potential for enhancing time-frequency analysis in the presence of strong interference.
arXiv Detail & Related papers (2025-03-19T08:36:20Z) - Spectral Estimators for Multi-Index Models: Precise Asymptotics and Optimal Weak Recovery [21.414505380263016]
We focus on recovering the subspace spanned by the signals via spectral estimators.<n>Our main technical contribution is a precise characterization of the performance of spectral methods.<n>Our analysis unveils a phase transition phenomenon in which, as the sample complexity grows, eigenvalues escape from the bulk of the spectrum.
arXiv Detail & Related papers (2025-02-03T18:08:30Z) - Point-Calibrated Spectral Neural Operators [54.13671100638092]
We introduce Point-Calibrated Spectral Transform, which learns operator mappings by approximating functions with the point-level adaptive spectral basis.
Point-Calibrated Spectral Neural Operators learn operator mappings by approximating functions with the point-level adaptive spectral basis.
arXiv Detail & Related papers (2024-10-15T08:19:39Z) - Efficient Measurement-Driven Eigenenergy Estimation with Classical Shadows [0.0]
We introduce the framework of multi-observable dynamic mode decomposition (MODMD)
We replace typical Hadamard-test circuits with a protocol designed to predict low-rank observables.
Our work paves the path for efficient designs of measurement-driven algorithms on near-term and early fault-tolerant quantum devices.
arXiv Detail & Related papers (2024-09-20T17:59:56Z) - Matrix Denoising with Doubly Heteroscedastic Noise: Fundamental Limits and Optimal Spectral Methods [24.06775799553418]
We study the matrix denoising problem of estimating the singular vectors of a rank-$1$ signal corrupted by noise with both column and row correlations.
Our work establishes the information-theoretic and algorithmic limits of matrix denoising with doubly heteroscedastic noise.
arXiv Detail & Related papers (2024-05-22T18:38:10Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
Extended Vision techniques often pose a challenge in their interpretation.
The huge dimensionality of data cube spectra poses a complex task in its statistical interpretation.
In this paper, we explore the possibility of applying unsupervised clustering methods in encoded space.
A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm.
arXiv Detail & Related papers (2024-01-31T09:31:28Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
Conventional wisdom dictates that spectral convolutional networks may only be deployed on undirected graphs.
Here we show this traditional reliance on the graph Fourier transform to be superfluous.
We provide a frequency-response interpretation of newly developed filters, investigate the influence of the basis used to express filters and discuss the interplay with characteristic operators on which networks are based.
arXiv Detail & Related papers (2023-10-03T17:42:09Z) - Boosting the Generalization Ability for Hyperspectral Image Classification using Spectral-spatial Axial Aggregation Transformer [14.594398447576188]
In the hyperspectral image classification (HSIC) task, the most commonly used model validation paradigm is partitioning the training-test dataset through pixel-wise random sampling.
In our experiments, we found that the high accuracy was reached because the training and test datasets share a lot of information.
We propose a spectral-spatial axial aggregation transformer model, namely SaaFormer, that preserves generalization across dataset partitions.
arXiv Detail & Related papers (2023-06-29T07:55:43Z) - Spectral Feature Augmentation for Graph Contrastive Learning and Beyond [64.78221638149276]
We present a novel spectral feature argumentation for contrastive learning on graphs (and images)
For each data view, we estimate a low-rank approximation per feature map and subtract that approximation from the map to obtain its complement.
This is achieved by the proposed herein incomplete power iteration, a non-standard power regime which enjoys two valuable byproducts (under mere one or two iterations)
Experiments on graph/image datasets show that our spectral feature augmentation outperforms baselines.
arXiv Detail & Related papers (2022-12-02T08:48:11Z) - Spectral Decomposition Representation for Reinforcement Learning [100.0424588013549]
We propose an alternative spectral method, Spectral Decomposition Representation (SPEDER), that extracts a state-action abstraction from the dynamics without inducing spurious dependence on the data collection policy.
A theoretical analysis establishes the sample efficiency of the proposed algorithm in both the online and offline settings.
An experimental investigation demonstrates superior performance over current state-of-the-art algorithms across several benchmarks.
arXiv Detail & Related papers (2022-08-19T19:01:30Z) - Scale Dependencies and Self-Similar Models with Wavelet Scattering
Spectra [1.5866079116942815]
A complex wavelet transform computes signal variations at each scale.
Dependencies across scales are captured by the joint correlation across time and scales of wavelet coefficients.
We show that this vector of moments characterizes a wide range of non-Gaussian properties of multi-scale processes.
arXiv Detail & Related papers (2022-04-19T22:31:13Z) - Robust, Nonparametric, Efficient Decomposition of Spectral Peaks under
Distortion and Interference [0.0]
We propose a decomposition method for the spectral peaks in an observed frequency spectrum, which is efficiently acquired by utilizing the Fast Fourier Transform.
We model the peaks in spectrum as pseudo-symmetric functions, where the only constraint is a nonincreasing behavior around a central frequency when the distance increases.
Our approach is more robust against arbitrary distortion, interference and noise on the spectrum that may be caused by an observation system.
arXiv Detail & Related papers (2022-04-18T17:08:37Z) - Spectral Splitting and Aggregation Network for Hyperspectral Face
Super-Resolution [82.59267937569213]
High-resolution (HR) hyperspectral face image plays an important role in face related computer vision tasks under uncontrolled conditions.
In this paper, we investigate how to adapt the deep learning techniques to hyperspectral face image super-resolution.
We present a spectral splitting and aggregation network (SSANet) for HFSR with limited training samples.
arXiv Detail & Related papers (2021-08-31T02:13:00Z) - Spectral Methods for Data Science: A Statistical Perspective [37.2486912080998]
Spectral methods have emerged as a simple yet surprisingly effective approach for extracting information from massive, noisy and incomplete data.
This book aims to present a systematic, comprehensive, yet accessible introduction to spectral methods from a modern statistical perspective.
arXiv Detail & Related papers (2020-12-15T18:40:56Z) - Spectral Analysis Network for Deep Representation Learning and Image
Clustering [53.415803942270685]
This paper proposes a new network structure for unsupervised deep representation learning based on spectral analysis.
It can identify the local similarities among images in patch level and thus more robust against occlusion.
It can learn more clustering-friendly representations and is capable to reveal the deep correlations among data samples.
arXiv Detail & Related papers (2020-09-11T05:07:15Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
We develop techniques which exploit spectral properties of the data matrix to obtain improved approximation guarantees.
Our approach leads to significantly better bounds for datasets with known rates of singular value decay.
We show that both our improved bounds and the multiple-descent curve can be observed on real datasets simply by varying the RBF parameter.
arXiv Detail & Related papers (2020-02-21T00:43:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.