Beyond Induction Heads: In-Context Meta Learning Induces Multi-Phase Circuit Emergence
- URL: http://arxiv.org/abs/2505.16694v2
- Date: Tue, 10 Jun 2025 05:24:12 GMT
- Title: Beyond Induction Heads: In-Context Meta Learning Induces Multi-Phase Circuit Emergence
- Authors: Gouki Minegishi, Hiroki Furuta, Shohei Taniguchi, Yusuke Iwasawa, Yutaka Matsuo,
- Abstract summary: Transformer-based language models exhibit In-Context Learning (ICL), where predictions are made adaptively based on context.<n>We experimentally clarify how such meta-learning ability is acquired by analyzing the dynamics of the model's circuit during training.
- Score: 28.260455480198047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer-based language models exhibit In-Context Learning (ICL), where predictions are made adaptively based on context. While prior work links induction heads to ICL through a sudden jump in accuracy, this can only account for ICL when the answer is included within the context. However, an important property of practical ICL in large language models is the ability to meta-learn how to solve tasks from context, rather than just copying answers from context; how such an ability is obtained during training is largely unexplored. In this paper, we experimentally clarify how such meta-learning ability is acquired by analyzing the dynamics of the model's circuit during training. Specifically, we extend the copy task from previous research into an In-Context Meta Learning setting, where models must infer a task from examples to answer queries. Interestingly, in this setting, we find that there are multiple phases in the process of acquiring such abilities, and that a unique circuit emerges in each phase, contrasting with the single-phases change in induction heads. The emergence of such circuits can be related to several phenomena known in large language models, and our analysis lead to a deeper understanding of the source of the transformer's ICL ability.
Related papers
- Provable In-Context Learning of Nonlinear Regression with Transformers [58.018629320233174]
In-context learning (ICL) is the ability to perform unseen tasks using task-specific prompts without updating parameters.<n>Recent research has actively explored the training dynamics behind ICL.<n>This paper investigates more complex nonlinear regression tasks, aiming to uncover how transformers acquire in-context learning capabilities.
arXiv Detail & Related papers (2025-07-28T00:09:28Z) - Illusion or Algorithm? Investigating Memorization, Emergence, and Symbolic Processing in In-Context Learning [48.67380502157004]
Large-scale Transformer language models (LMs) trained solely on next-token prediction with web-scale data can solve a wide range of tasks.<n>The mechanism behind this capability, known as in-context learning (ICL), remains both controversial and poorly understood.
arXiv Detail & Related papers (2025-05-16T08:50:42Z) - Understanding Knowledge Hijack Mechanism in In-context Learning through Associative Memory [37.93644115914534]
In-context learning (ICL) enables large language models to adapt to new tasks without fine-tuning.<n>This paper investigates the balance between in-context information and pretrained bigram knowledge in token prediction.
arXiv Detail & Related papers (2024-12-16T05:33:05Z) - In-Context Learning with Representations: Contextual Generalization of Trained Transformers [66.78052387054593]
In-context learning (ICL) refers to a capability of pretrained large language models, which can learn a new task given a few examples during inference.
This paper investigates the training dynamics of transformers by gradient descent through the lens of non-linear regression tasks.
arXiv Detail & Related papers (2024-08-19T16:47:46Z) - Asymptotic theory of in-context learning by linear attention [33.53106537972063]
In-context learning is a cornerstone of Transformers' success.<n>Questions about the necessary sample complexity, pretraining task diversity, and context length for successful ICL remain unresolved.
arXiv Detail & Related papers (2024-05-20T03:24:24Z) - The mechanistic basis of data dependence and abrupt learning in an
in-context classification task [0.3626013617212666]
We show that specific distributional properties inherent in language control the trade-off or simultaneous appearance of two forms of learning.
In-context learning is driven by the abrupt emergence of an induction head, which subsequently competes with in-weights learning.
We propose that the sharp transitions in attention-based networks arise due to a specific chain of multi-layer operations necessary to achieve ICL.
arXiv Detail & Related papers (2023-12-03T20:53:41Z) - How Do Transformers Learn In-Context Beyond Simple Functions? A Case
Study on Learning with Representations [98.7450564309923]
This paper takes initial steps on understanding in-context learning (ICL) in more complex scenarios, by studying learning with representations.
We construct synthetic in-context learning problems with a compositional structure, where the label depends on the input through a possibly complex but fixed representation function.
We show theoretically the existence of transformers that approximately implement such algorithms with mild depth and size.
arXiv Detail & Related papers (2023-10-16T17:40:49Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Explaining Emergent In-Context Learning as Kernel Regression [61.57151500616111]
Large language models (LLMs) have initiated a paradigm shift in transfer learning.
In this paper, we investigate the reason why a transformer-based language model can accomplish in-context learning after pre-training.
We find that during ICL, the attention and hidden features in LLMs match the behaviors of a kernel regression.
arXiv Detail & Related papers (2023-05-22T06:45:02Z) - The Learnability of In-Context Learning [16.182561312622315]
We propose a first-of-its-kind PAC based framework for in-context learnability.
Our framework includes an initial pretraining phase, which fits a function to the pretraining distribution.
We show that in-context learning is more about identifying the task than about learning it.
arXiv Detail & Related papers (2023-03-14T13:28:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.