Understanding Knowledge Hijack Mechanism in In-context Learning through Associative Memory
- URL: http://arxiv.org/abs/2412.11459v1
- Date: Mon, 16 Dec 2024 05:33:05 GMT
- Title: Understanding Knowledge Hijack Mechanism in In-context Learning through Associative Memory
- Authors: Shuo Wang, Issei Sato,
- Abstract summary: In-context learning (ICL) enables large language models to adapt to new tasks without fine-tuning.
This paper investigates the balance between in-context information and pretrained bigram knowledge in token prediction.
- Score: 37.93644115914534
- License:
- Abstract: In-context learning (ICL) enables large language models (LLMs) to adapt to new tasks without fine-tuning by leveraging contextual information provided within a prompt. However, ICL relies not only on contextual clues but also on the global knowledge acquired during pretraining for the next token prediction. Analyzing this process has been challenging due to the complex computational circuitry of LLMs. This paper investigates the balance between in-context information and pretrained bigram knowledge in token prediction, focusing on the induction head mechanism, a key component in ICL. Leveraging the fact that a two-layer transformer can implement the induction head mechanism with associative memories, we theoretically analyze the logits when a two-layer transformer is given prompts generated by a bigram model. In the experiments, we design specific prompts to evaluate whether the outputs of a two-layer transformer align with the theoretical results.
Related papers
- Emergence of Abstractions: Concept Encoding and Decoding Mechanism for In-Context Learning in Transformers [18.077009146950473]
Autoregressive transformers exhibit adaptive learning through in-context learning (ICL)
We propose concept encoding-decoding mechanism to explain ICL by studying how transformers form and use internal abstractions in their representations.
Our empirical insights shed light into better understanding the success and failure modes of large language models via their representations.
arXiv Detail & Related papers (2024-12-16T19:00:18Z) - Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
In-context learning allows GPT-style transformers to generalize during inference without modifying their weights.
This paper focuses specifically on their ability to learn and predict affine recurrences as an ICL task.
We analyze the model's internal operations using both empirical and theoretical approaches.
arXiv Detail & Related papers (2024-10-22T21:30:01Z) - How Do Nonlinear Transformers Learn and Generalize in In-Context Learning? [82.51626700527837]
Transformer-based large language models displayed impressive in-context learning capabilities, where a pre-trained model can handle new tasks without fine-tuning.
We analyze how the mechanics of how Transformer to achieve ICL contribute to the technical challenges of the training problems in Transformers.
arXiv Detail & Related papers (2024-02-23T21:07:20Z) - Towards Understanding How Transformers Learn In-context Through a Representation Learning Lens [9.590540796223715]
In this paper, we attempt to explore the in-context learning process in Transformers through a lens of representation learning.
The ICL inference process of the attention layer aligns with the training procedure of its dual model, generating token representation predictions.
We extend our theoretical conclusions to more complicated scenarios, including one Transformer layer and multiple attention layers.
arXiv Detail & Related papers (2023-10-20T01:55:34Z) - How Do Transformers Learn In-Context Beyond Simple Functions? A Case
Study on Learning with Representations [98.7450564309923]
This paper takes initial steps on understanding in-context learning (ICL) in more complex scenarios, by studying learning with representations.
We construct synthetic in-context learning problems with a compositional structure, where the label depends on the input through a possibly complex but fixed representation function.
We show theoretically the existence of transformers that approximately implement such algorithms with mild depth and size.
arXiv Detail & Related papers (2023-10-16T17:40:49Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
This work first provides a comprehensive statistical theory for transformers to perform ICL.
We show that transformers can implement a broad class of standard machine learning algorithms in context.
A emphsingle transformer can adaptively select different base ICL algorithms.
arXiv Detail & Related papers (2023-06-07T17:59:31Z) - Birth of a Transformer: A Memory Viewpoint [25.294093283819443]
Large language models based on transformers have achieved great empirical successes.
As they are deployed more widely, there is a growing need to better understand their internal mechanisms in order to make them more reliable.
We study how transformers balance these two types of distributions of knowledge by considering a synthetic setup where tokens are generated from either global or context-specific bigrams.
arXiv Detail & Related papers (2023-06-01T15:30:33Z) - Multilinear Compressive Learning with Prior Knowledge [106.12874293597754]
Multilinear Compressive Learning (MCL) framework combines Multilinear Compressive Sensing and Machine Learning into an end-to-end system.
Key idea behind MCL is the assumption of the existence of a tensor subspace which can capture the essential features from the signal for the downstream learning task.
In this paper, we propose a novel solution to address both of the aforementioned requirements, i.e., How to find those tensor subspaces in which the signals of interest are highly separable?
arXiv Detail & Related papers (2020-02-17T19:06:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.