MCP-RADAR: A Multi-Dimensional Benchmark for Evaluating Tool Use Capabilities in Large Language Models
- URL: http://arxiv.org/abs/2505.16700v1
- Date: Thu, 22 May 2025 14:02:37 GMT
- Title: MCP-RADAR: A Multi-Dimensional Benchmark for Evaluating Tool Use Capabilities in Large Language Models
- Authors: Xuanqi Gao, Siyi Xie, Juan Zhai, Shqing Ma, Chao Shen,
- Abstract summary: This paper introduces MCP-RADAR, the first comprehensive benchmark specifically designed to evaluate Large Language Models (LLMs) performance in the Model Context Protocol (MCP) framework.<n>Unlike conventional benchmarks that rely on subjective human evaluations or binary success metrics, MCP-RADAR employs objective, quantifiable measurements across multiple task domains.
- Score: 11.809732662992982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Large Language Models (LLMs) evolve from passive text generators to active reasoning agents capable of tool interaction, the Model Context Protocol (MCP) has emerged as a standardized framework for dynamic tool discovery and orchestration. Despite widespread industry adoption, existing evaluation methodologies fail to adequately assess tool utilization capabilities within this new paradigm. This paper introduces MCP-RADAR, the first comprehensive benchmark specifically designed to evaluate LLM performance in the MCP framework through a novel five-dimensional approach measuring: answer accuracy, tool selection efficiency, computational resource efficiency, parameter construction accuracy, and execution speed. Unlike conventional benchmarks that rely on subjective human evaluations or binary success metrics, MCP-RADAR employs objective, quantifiable measurements across multiple task domains including software engineering, mathematical reasoning, and general problem-solving. Our evaluations of leading commercial and open-source LLMs reveal distinctive capability profiles with significant trade-offs between accuracy, efficiency, and speed, challenging traditional single-metric performance rankings. Besides, we provide valuable guidance for developers to optimize their tools for maximum model compatibility and effectiveness. While focused on MCP due to its standardized approach, our methodology remains applicable across all LLM agent tool integration frameworks, providing valuable insights for both LLM developers and tool creators to optimize the entire LLM-tool interaction ecosystem. The implementation, configurations, and datasets used in our evaluation are publicly available at https://anonymous.4open.science/r/MCPRadar-B143.
Related papers
- MCPEval: Automatic MCP-based Deep Evaluation for AI Agent Models [76.72220653705679]
We introduce MCPEval, an open-source framework that automates end-to-end task generation and deep evaluation of intelligent agents.<n> MCPEval standardizes metrics, seamlessly integrates with native agent tools, and eliminates manual effort in building evaluation pipelines.<n> Empirical results across five real-world domains show its effectiveness in revealing nuanced, domain-specific performance.
arXiv Detail & Related papers (2025-07-17T05:46:27Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
Gym-style framework for systematically reinforcement learning, evaluating, and improving autonomous large language model (LLM) agents.<n>MLE-Dojo covers diverse, open-ended MLE tasks carefully curated to reflect realistic engineering scenarios.<n>Its fully executable environment supports comprehensive agent training via both supervised fine-tuning and reinforcement learning.
arXiv Detail & Related papers (2025-05-12T17:35:43Z) - Acting Less is Reasoning More! Teaching Model to Act Efficiently [87.28134636548705]
Tool-integrated reasoning augments large language models with the ability to invoke external tools to solve tasks.<n>Current approaches typically optimize only for final correctness without considering the efficiency or necessity of external tool use.<n>We propose a framework that encourages models to produce accurate answers with minimal tool calls.<n>Our approach reduces tool calls by up to 68.3% and improves tool productivity by up to 215.4%, while maintaining comparable answer accuracy.
arXiv Detail & Related papers (2025-04-21T05:40:05Z) - TMIQ: Quantifying Test and Measurement Domain Intelligence in Large Language Models [0.0]
We introduce the Test and Measurement Intelligence Quotient (TMIQ), a benchmark designed to quantitatively assess Large Language Models (LLMs)<n>TMIQ offers a comprehensive set of scenarios and metrics for detailed evaluation, including SCPI command matching accuracy, ranked response evaluation, Chain-of-Thought Reasoning (CoT)<n>In testing various LLMs, our findings indicate varying levels of proficiency, with exact SCPI command match accuracy ranging from around 56% to 73%, and ranked matching first-position scores achieving around 33%.
arXiv Detail & Related papers (2025-03-03T23:12:49Z) - Evaluating Personalized Tool-Augmented LLMs from the Perspectives of Personalization and Proactivity [17.723293304671877]
We introduce a novel benchmark ETAPP for evaluating personalized tool invocation.<n>To improve the accuracy of our evaluation, we propose a key-point-based evaluation method.<n>The effectiveness of our preference-setting and key-point-based evaluation method is also validated.
arXiv Detail & Related papers (2025-03-02T07:36:22Z) - IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Agents [17.301758094000125]
Large language model (LLM) agents have emerged as a promising solution to automate the development of computer vision models.<n>We introduce Iterative Refinement, a novel strategy for LLM-driven ML pipeline design.<n>Iterative Refinement improves stability, interpretability, and overall model performance.
arXiv Detail & Related papers (2025-02-25T01:52:37Z) - Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.<n>MeCo captures high-level cognitive signals in the representation space, guiding when to invoke tools.<n>Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - Balancing Efficiency and Effectiveness: An LLM-Infused Approach for Optimized CTR Prediction [19.657522015829922]
We introduce a novel approach that models deep semantic information end-to-end.<n>Our framework is carefully designed to balance efficiency and effectiveness.<n>Online A/B tests conducted on the Meituan sponsored-search system demonstrate that our method significantly outperforms baseline models in terms of Cost Per Mile (CPM) and Click Through Rate (CTR)
arXiv Detail & Related papers (2024-12-09T02:36:38Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and hallucinations.
Here, we introduce AvaTaR, a novel and automated framework that optimize an LLM agent to effectively leverage provided tools, improving performance on a given task.
arXiv Detail & Related papers (2024-06-17T04:20:02Z) - Tool Learning in the Wild: Empowering Language Models as Automatic Tool Agents [56.822238860147024]
Augmenting large language models with external tools has emerged as a promising approach to extend their utility.<n>Previous methods manually parse tool documentation and create in-context demonstrations, transforming tools into structured formats for LLMs to use in their step-by-step reasoning.<n>We propose AutoTools, a framework that enables LLMs to automate the tool-use workflow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - MINT: Evaluating LLMs in Multi-turn Interaction with Tools and Language
Feedback [78.60644407028022]
We introduce MINT, a benchmark that evaluates large language models' ability to solve tasks with multi-turn interactions.
LLMs generally benefit from tools and language feedback, with performance gains of 1-8% for each turn of tool use.
LLMs evaluated, supervised instruction-finetuning (SIFT) and reinforcement learning from human feedback (RLHF) generally hurt multi-turn capabilities.
arXiv Detail & Related papers (2023-09-19T15:25:42Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
Large Language Models (LLMs) have made significant progress in utilizing tools, but their ability is limited by API availability.
We propose CREATOR, a novel framework that enables LLMs to create their own tools using documentation and code realization.
We evaluate CREATOR on MATH and TabMWP benchmarks, respectively consisting of challenging math competition problems.
arXiv Detail & Related papers (2023-05-23T17:51:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.