REOBench: Benchmarking Robustness of Earth Observation Foundation Models
- URL: http://arxiv.org/abs/2505.16793v1
- Date: Thu, 22 May 2025 15:34:50 GMT
- Title: REOBench: Benchmarking Robustness of Earth Observation Foundation Models
- Authors: Xiang Li, Yong Tao, Siyuan Zhang, Siwei Liu, Zhitong Xiong, Chunbo Luo, Lu Liu, Mykola Pechenizkiy, Xiao Xiang Zhu, Tianjin Huang,
- Abstract summary: REOBench is the first comprehensive benchmark for evaluating the robustness of Earth observation foundation models.<n>We conduct a systematic evaluation of a broad range of models trained using masked image modeling, contrastive learning, and vision-language pre-training paradigms.<n>Results reveal that existing Earth observation foundation models experience significant performance degradation when exposed to input corruptions.
- Score: 42.125301183756875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Earth observation foundation models have shown strong generalization across multiple Earth observation tasks, but their robustness under real-world perturbations remains underexplored. To bridge this gap, we introduce REOBench, the first comprehensive benchmark for evaluating the robustness of Earth observation foundation models across six tasks and twelve types of image corruptions, including both appearance-based and geometric perturbations. To ensure realistic and fine-grained evaluation, our benchmark focuses on high-resolution optical remote sensing images, which are widely used in critical applications such as urban planning and disaster response. We conduct a systematic evaluation of a broad range of models trained using masked image modeling, contrastive learning, and vision-language pre-training paradigms. Our results reveal that (1) existing Earth observation foundation models experience significant performance degradation when exposed to input corruptions. (2) The severity of degradation varies across tasks, model architectures, backbone sizes, and types of corruption, with performance drop varying from less than 1% to over 20%. (3) Vision-language models show enhanced robustness, particularly in multimodal tasks. REOBench underscores the vulnerability of current Earth observation foundation models to real-world corruptions and provides actionable insights for developing more robust and reliable models.
Related papers
- Towards Scalable and Generalizable Earth Observation Data Mining via Foundation Model Composition [0.0]
We investigate whether foundation models pretrained on remote sensing and general vision datasets can be effectively combined to improve performance.<n>The results show that feature-level ensembling of smaller pretrained models can match or exceed the performance of much larger models.<n>The study highlights the potential of applying knowledge distillation to transfer the strengths of ensembles into more compact models.
arXiv Detail & Related papers (2025-06-25T07:02:42Z) - Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized Corruptions [49.546479320670464]
This paper introduces specialized metrics for benchmarking the spatial robustness of segmentation models.<n>We propose region-aware multi-attack adversarial analysis, a method that enables a deeper understanding of model robustness.<n>The results reveal that models respond to these two types of threats differently.
arXiv Detail & Related papers (2025-04-02T11:37:39Z) - FoundIR: Unleashing Million-scale Training Data to Advance Foundation Models for Image Restoration [66.61201445650323]
Existing methods suffer from a generalization bottleneck in real-world scenarios.<n>We contribute a million-scale dataset with two notable advantages over existing training data.<n>We propose a robust model, FoundIR, to better address a broader range of restoration tasks in real-world scenarios.
arXiv Detail & Related papers (2024-12-02T12:08:40Z) - Towards Evaluating the Robustness of Visual State Space Models [63.14954591606638]
Vision State Space Models (VSSMs) have demonstrated remarkable performance in visual perception tasks.
However, their robustness under natural and adversarial perturbations remains a critical concern.
We present a comprehensive evaluation of VSSMs' robustness under various perturbation scenarios.
arXiv Detail & Related papers (2024-06-13T17:59:44Z) - On the Robustness of Object Detection Models on Aerial Images [38.91734128770737]
We introduce two novel benchmarks based on DOTA-v1.0.<n>The first benchmark encompasses 19 prevalent corruptions, while the second focuses on the cloud-corrupted condition.<n>We find that rotation-invariant modeling and enhanced backbone architectures can improve the robustness of models.
arXiv Detail & Related papers (2023-08-29T15:16:51Z) - A Survey on the Robustness of Computer Vision Models against Common Corruptions [3.6486148851646063]
Computer vision models are susceptible to changes in input images caused by sensor errors or extreme imaging environments.
These corruptions can significantly hinder the reliability of these models when deployed in real-world scenarios.
We present a comprehensive overview of methods that improve the robustness of computer vision models against common corruptions.
arXiv Detail & Related papers (2023-05-10T10:19:31Z) - Robo3D: Towards Robust and Reliable 3D Perception against Corruptions [58.306694836881235]
We present Robo3D, the first comprehensive benchmark heading toward probing the robustness of 3D detectors and segmentors under out-of-distribution scenarios.
We consider eight corruption types stemming from severe weather conditions, external disturbances, and internal sensor failure.
We propose a density-insensitive training framework along with a simple flexible voxelization strategy to enhance the model resiliency.
arXiv Detail & Related papers (2023-03-30T17:59:17Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
Generalizability of human pose estimation models developed using supervision on large-scale in-studio datasets remains questionable.
We propose a novel kinematic-structure-preserved unsupervised 3D pose estimation framework, which is not restrained by any paired or unpaired weak supervisions.
Our proposed model employs three consecutive differentiable transformations named as forward-kinematics, camera-projection and spatial-map transformation.
arXiv Detail & Related papers (2020-06-24T23:56:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.