On the Robustness of Object Detection Models on Aerial Images
- URL: http://arxiv.org/abs/2308.15378v2
- Date: Mon, 13 Jan 2025 06:49:22 GMT
- Title: On the Robustness of Object Detection Models on Aerial Images
- Authors: Haodong He, Jian Ding, Bowen Xu, Gui-Song Xia,
- Abstract summary: We introduce two novel benchmarks based on DOTA-v1.0.
The first benchmark encompasses 19 prevalent corruptions, while the second focuses on the cloud-corrupted condition.
We find that rotation-invariant modeling and enhanced backbone architectures can improve the robustness of models.
- Score: 38.91734128770737
- License:
- Abstract: The robustness of object detection models is a major concern when applied to real-world scenarios. The performance of most models tends to degrade when confronted with images affected by corruptions, since they are usually trained and evaluated on clean datasets. While numerous studies have explored the robustness of object detection models on natural images, there is a paucity of research focused on models applied to aerial images, which feature complex backgrounds, substantial variations in scales, and orientations of objects. This paper addresses the challenge of assessing the robustness of object detection models on aerial images, with a specific emphasis on scenarios where images are affected by clouds. In this study, we introduce two novel benchmarks based on DOTA-v1.0. The first benchmark encompasses 19 prevalent corruptions, while the second focuses on the cloud-corrupted condition-a phenomenon uncommon in natural images yet frequent in aerial photography. We systematically evaluate the robustness of mainstream object detection models and perform necessary ablation experiments. Through our investigations, we find that rotation-invariant modeling and enhanced backbone architectures can improve the robustness of models. Furthermore, increasing the capacity of Transformer-based backbones can strengthen their robustness. The benchmarks we propose and our comprehensive experimental analyses can facilitate research on robust object detection on aerial images. The codes and datasets are available at: https://github.com/hehaodong530/DOTA-C.
Related papers
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Synthetic imagery for fuzzy object detection: A comparative study [3.652647451754697]
Fuzzy object detection is a challenging field of research in computer vision (CV)
Fuzzy objects such as fire, smoke, mist, and steam present significantly greater complexities in terms of visual features.
We propose and leverage an alternative method of generating and automatically annotating fully synthetic fire images.
arXiv Detail & Related papers (2024-10-01T23:22:54Z) - SOAR: Advancements in Small Body Object Detection for Aerial Imagery Using State Space Models and Programmable Gradients [0.8873228457453465]
Small object detection in aerial imagery presents significant challenges in computer vision.
Traditional methods using transformer-based models often face limitations stemming from the lack of specialized databases.
This paper introduces two innovative approaches that significantly enhance detection and segmentation capabilities for small aerial objects.
arXiv Detail & Related papers (2024-05-02T19:47:08Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - ARUBA: An Architecture-Agnostic Balanced Loss for Aerial Object
Detection [24.085715205081385]
We denote size of an object as the number of pixels it covers in an image and size imbalance as the over-representation of certain sizes of objects in a dataset.
We propose a novel ARchitectUre-agnostic BAlanced Loss (ARUBA) that can be applied as a plugin on top of any object detection model.
arXiv Detail & Related papers (2022-10-10T11:28:16Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - Knowledge Distillation for Oriented Object Detection on Aerial Images [1.827510863075184]
We present a model compression method for rotated object detection on aerial images by knowledge distillation, namely KD-RNet.
The experimental result on a large-scale aerial object detection dataset (DOTA) demonstrates that the proposed KD-RNet model can achieve improved mean-average precision (mAP) with reduced number of parameters, at the same time, KD-RNet boost the performance on providing high quality detections with higher overlap with groundtruth annotations.
arXiv Detail & Related papers (2022-06-20T14:24:16Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - Contemplating real-world object classification [53.10151901863263]
We reanalyze the ObjectNet dataset recently proposed by Barbu et al. containing objects in daily life situations.
We find that applying deep models to the isolated objects, rather than the entire scene as is done in the original paper, results in around 20-30% performance improvement.
arXiv Detail & Related papers (2021-03-08T23:29:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.