DeepRec: Towards a Deep Dive Into the Item Space with Large Language Model Based Recommendation
- URL: http://arxiv.org/abs/2505.16810v1
- Date: Thu, 22 May 2025 15:49:38 GMT
- Title: DeepRec: Towards a Deep Dive Into the Item Space with Large Language Model Based Recommendation
- Authors: Bowen Zheng, Xiaolei Wang, Enze Liu, Xi Wang, Lu Hongyu, Yu Chen, Wayne Xin Zhao, Ji-Rong Wen,
- Abstract summary: Large language models (LLMs) have been introduced into recommender systems (RSs)<n>We propose DeepRec, a novel LLM-based RS that enables autonomous multi-turn interactions between LLMs and TRMs for deep exploration of the item space.<n> Experiments on public datasets demonstrate that DeepRec significantly outperforms both traditional and LLM-based baselines.
- Score: 83.21140655248624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, large language models (LLMs) have been introduced into recommender systems (RSs), either to enhance traditional recommendation models (TRMs) or serve as recommendation backbones. However, existing LLM-based RSs often do not fully exploit the complementary advantages of LLMs (e.g., world knowledge and reasoning) and TRMs (e.g., recommendation-specific knowledge and efficiency) to fully explore the item space. To address this, we propose DeepRec, a novel LLM-based RS that enables autonomous multi-turn interactions between LLMs and TRMs for deep exploration of the item space. In each interaction turn, LLMs reason over user preferences and interact with TRMs to retrieve candidate items. After multi-turn interactions, LLMs rank the retrieved items to generate the final recommendations. We adopt reinforcement learning(RL) based optimization and propose novel designs from three aspects: recommendation model based data rollout, recommendation-oriented hierarchical rewards, and a two-stage RL training strategy. For data rollout, we introduce a preference-aware TRM, with which LLMs interact to construct trajectory data. For rewards, we design a hierarchical reward function that involves both process-level and outcome-level rewards to optimize the interaction process and recommendation performance, respectively. For RL training, we develop a two-stage training strategy, where the first stage aims to guide LLMs to interact with TRMs and the second stage focuses on performance improvement. Experiments on public datasets demonstrate that DeepRec significantly outperforms both traditional and LLM-based baselines, offering a new paradigm for deep exploration in recommendation systems.
Related papers
- Bridging the Gap: Self-Optimized Fine-Tuning for LLM-based Recommender Systems [12.987966995089122]
There are currently two commonly used strategies to enable Large Language Models (LLMs) to have recommendation capabilities.<n>We propose a novel "Guidance+Tuning" method called Self-d Fine-Tuning (SOFT), which adopts the idea of curriculum learning.<n>It significantly enhances the recommendation accuracy (37.59% on average) of LLM-based methods.
arXiv Detail & Related papers (2025-05-27T06:22:50Z) - What LLMs Miss in Recommendations: Bridging the Gap with Retrieval-Augmented Collaborative Signals [4.297070083645049]
User-item interactions contain rich collaborative signals that form the backbone of many successful recommender systems.<n>It remains unclear whether large language models (LLMs) can effectively reason over this type of collaborative information.<n>We introduce a simple retrieval-augmented generation (RAG) method that enhances LLMs by grounding their predictions in structured interaction data.
arXiv Detail & Related papers (2025-05-27T05:18:57Z) - STAR: A Simple Training-free Approach for Recommendations using Large Language Models [36.18841135511487]
Current state-of-the-art methods rely on fine-tuning large language models (LLMs) to achieve optimal results.<n>We propose a framework that utilizes LLMs and can be applied to various recommendation tasks without the need for fine-tuning.<n>Our method achieves Hits@10 performance of +23.8% on Beauty, +37.5% on Toys & Games, and -1.8% on Sports & Outdoors.
arXiv Detail & Related papers (2024-10-21T19:34:40Z) - Direct Preference Optimization for LLM-Enhanced Recommendation Systems [33.54698201942643]
Large Language Models (LLMs) have exhibited remarkable performance across a wide range of domains.<n>We propose DPO4Rec, a framework that integrates DPO into LLM-enhanced recommendation systems.<n>Extensive experiments show that DPO4Rec significantly improves re-ranking performance over strong baselines.
arXiv Detail & Related papers (2024-10-08T11:42:37Z) - LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the ability to capture semantic relationships between items, independent of their popularity.<n>We introduce LLMEmb, a novel method leveraging LLM to generate item embeddings that enhance Sequential Recommender Systems (SRS) performance.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling [21.495443162191332]
Large Language Models (LLMs) have achieved remarkable success in various fields, prompting several studies to explore their potential in recommendation systems.
We propose a novel Hierarchical Large Language Model (HLLM) architecture designed to enhance sequential recommendation systems.
HLLM achieves excellent scalability, with the largest configuration utilizing 7B parameters for both item feature extraction and user interest modeling.
arXiv Detail & Related papers (2024-09-19T13:03:07Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
This paper proposes a practice-friendly LLM-enhanced paradigm with preference parsing (P2Rec) for sequential recommender systems (SRS)
Specifically, in the information reconstruction stage, we design a new user-level SFT task for collaborative information injection with the assistance of a pre-trained SRS model.
Our goal is to let LLM learn to reconstruct a corresponding prior preference distribution from each user's interaction sequence.
arXiv Detail & Related papers (2024-06-01T07:18:56Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
Large language models (LLM) have shown impressive general intelligence and human-like capabilities.
We conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
arXiv Detail & Related papers (2023-06-09T11:31:50Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.