Dynamic Reservoir Computing with Physical Neuromorphic Networks
- URL: http://arxiv.org/abs/2505.16813v1
- Date: Thu, 22 May 2025 15:50:45 GMT
- Title: Dynamic Reservoir Computing with Physical Neuromorphic Networks
- Authors: Yinhao Xu, Georg A. Gottwald, Zdenka Kuncic,
- Abstract summary: Reservoir Computing (RC) with physical systems requires an understanding of the underlying structure and internal dynamics of the specific physical reservoir.<n>Physical nano-electronic networks with neuromorphic dynamics are investigated for their use as physical reservoirs in an RC framework.<n>Networks with varying degrees of sparsity generate more useful nonlinear temporal outputs for dynamic RC compared to dense networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reservoir Computing (RC) with physical systems requires an understanding of the underlying structure and internal dynamics of the specific physical reservoir. In this study, physical nano-electronic networks with neuromorphic dynamics are investigated for their use as physical reservoirs in an RC framework. These neuromorphic networks operate as dynamic reservoirs, with node activities in general coupled to the edge dynamics through nonlinear nano-electronic circuit elements, and the reservoir outputs influenced by the underlying network connectivity structure. This study finds that networks with varying degrees of sparsity generate more useful nonlinear temporal outputs for dynamic RC compared to dense networks. Dynamic RC is also tested on an autonomous multivariate chaotic time series prediction task with networks of varying densities, which revealed the importance of network sparsity in maintaining network activity and overall dynamics, that in turn enabled the learning of the chaotic Lorenz63 system's attractor behavior.
Related papers
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - Generative System Dynamics in Recurrent Neural Networks [56.958984970518564]
We investigate the continuous time dynamics of Recurrent Neural Networks (RNNs)<n>We show that skew-symmetric weight matrices are fundamental to enable stable limit cycles in both linear and nonlinear configurations.<n> Numerical simulations showcase how nonlinear activation functions not only maintain limit cycles, but also enhance the numerical stability of the system integration process.
arXiv Detail & Related papers (2025-04-16T10:39:43Z) - Neural Symbolic Regression of Complex Network Dynamics [28.356824329954495]
We propose Physically Inspired Neural Dynamics Regression (PI-NDSR) to automatically learn the symbolic expression of dynamics.
We evaluate our method on synthetic datasets generated by various dynamics and real datasets on disease spreading.
arXiv Detail & Related papers (2024-10-15T02:02:30Z) - Dynamical stability and chaos in artificial neural network trajectories along training [3.379574469735166]
We study the dynamical properties of this process by analyzing through this lens the network trajectories of a shallow neural network.
We find hints of regular and chaotic behavior depending on the learning rate regime.
This work also contributes to the cross-fertilization of ideas between dynamical systems theory, network theory and machine learning.
arXiv Detail & Related papers (2024-04-08T17:33:11Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
We show how a parameterization of recurrent connectivity influences robustness in closed-loop settings.
We find that closed-form continuous-time neural networks (CfCs) with fewer parameters can outperform their full-rank, fully-connected counterparts.
arXiv Detail & Related papers (2023-10-05T21:44:18Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Piecewise-Velocity Model for Learning Continuous-time Dynamic Node
Representations [0.0]
Piecewise-Veable Model (PiVeM) for representation of continuous-time dynamic networks.
We show that PiVeM can successfully represent network structure and dynamics in ultra-low two-dimensional spaces.
It outperforms relevant state-of-art methods in downstream tasks such as link prediction.
arXiv Detail & Related papers (2022-12-23T13:57:56Z) - PAD-Net: An Efficient Framework for Dynamic Networks [72.85480289152719]
Common practice in implementing dynamic networks is to convert the given static layers into fully dynamic ones.
We propose a partially dynamic network, namely PAD-Net, to transform the redundant dynamic parameters into static ones.
Our method is comprehensively supported by large-scale experiments with two typical advanced dynamic architectures.
arXiv Detail & Related papers (2022-11-10T12:42:43Z) - Vanilla Feedforward Neural Networks as a Discretization of Dynamical Systems [9.382423715831687]
In this paper, we back to the classical network structure and prove that the vanilla feedforward networks could also be a numerical discretization of dynamic systems.
Our results could provide a new perspective for understanding the approximation properties of feedforward neural networks.
arXiv Detail & Related papers (2022-09-22T10:32:08Z) - Dimension of activity in random neural networks [6.752538702870792]
Neural networks are high-dimensional nonlinear dynamical systems that process information through the coordinated activity of many connected units.
We calculate cross covariances self-consistently via a two-site cavity DMFT.
Our formulae apply to a wide range of single-unit dynamics and generalize to non-i.i.d. couplings.
arXiv Detail & Related papers (2022-07-25T17:38:21Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Input-to-State Representation in linear reservoirs dynamics [15.491286626948881]
Reservoir computing is a popular approach to design recurrent neural networks.
The working principle of these networks is not fully understood.
A novel analysis of the dynamics of such networks is proposed.
arXiv Detail & Related papers (2020-03-24T00:14:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.