論文の概要: GCAL: Adapting Graph Models to Evolving Domain Shifts
- arxiv url: http://arxiv.org/abs/2505.16860v1
- Date: Thu, 22 May 2025 16:19:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.449383
- Title: GCAL: Adapting Graph Models to Evolving Domain Shifts
- Title(参考訳): GCAL: グラフモデルをドメインシフトの進化に適用する
- Authors: Ziyue Qiao, Qianyi Cai, Hao Dong, Jiawei Gu, Pengyang Wang, Meng Xiao, Xiao Luo, Hui Xiong,
- Abstract要約: 本稿では,様々なグラフ領域におけるモデル持続可能性と適応性を高めるために,GCAL法を提案する。
アダプティブ"フェーズは、過去の記憶を忘れないように再アダプティブしながら、新しいグラフドメインでモデルを微調整する情報アプローチを使用する。
情報ボトルネック理論から導かれる理論的な下界によって導かれる「生成メモリ」フェーズは、元のグラフをメモリに凝縮させる変分記憶グラフ生成モジュールを含む。
- 参考スコア(独自算出の注目度): 24.035518818536445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the challenge of graph domain adaptation on evolving, multiple out-of-distribution (OOD) graphs. Conventional graph domain adaptation methods are confined to single-step adaptation, making them ineffective in handling continuous domain shifts and prone to catastrophic forgetting. This paper introduces the Graph Continual Adaptive Learning (GCAL) method, designed to enhance model sustainability and adaptability across various graph domains. GCAL employs a bilevel optimization strategy. The "adapt" phase uses an information maximization approach to fine-tune the model with new graph domains while re-adapting past memories to mitigate forgetting. Concurrently, the "generate memory" phase, guided by a theoretical lower bound derived from information bottleneck theory, involves a variational memory graph generation module to condense original graphs into memories. Extensive experimental evaluations demonstrate that GCAL substantially outperforms existing methods in terms of adaptability and knowledge retention.
- Abstract(参考訳): 本稿では、進化的多重分布グラフ(OOD)におけるグラフ領域適応の課題について述べる。
従来のグラフ領域適応法は単一ステップ適応に限られており、連続的なドメインシフトの処理には効果がなく、破滅的な忘れがちである。
本稿では,様々なグラフ領域におけるモデル持続可能性と適応性を高めるために,GCAL法を提案する。
GCALは二段階最適化戦略を採用している。
アダプティブ」フェーズは、情報最大化アプローチを使用して、新しいグラフドメインでモデルを微調整し、過去の記憶を再度適応させて、忘れを軽減します。
同時に、情報ボトルネック理論から導かれる理論的下界によって導かれる「生成メモリ」フェーズは、元のグラフをメモリに凝縮させる変動メモリグラフ生成モジュールを含む。
大規模な実験的評価により、GCALは適応性と知識保持の観点から既存の手法を大幅に上回っていることが示されている。
関連論文リスト
- GALA: Graph Diffusion-based Alignment with Jigsaw for Source-free Domain Adaptation [13.317620250521124]
ソースコードのないドメイン適応は、現実世界で多くのアプリケーションを含むため、重要な機械学習トピックである。
最近のグラフニューラルネットワーク(GNN)アプローチは、ドメインシフトとラベルの不足により、パフォーマンスが著しく低下する可能性がある。
本稿では, ソースフリーなグラフドメイン適応に適した Jigsaw (GALA) を用いたグラフ拡散に基づくアライメント法を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:32:46Z) - Can Modifying Data Address Graph Domain Adaptation? [20.343259091425708]
Unsupervised Graph Domain Adaptation (UGDA)は、ラベル付きソースグラフからラベル付きターゲットグラフへの知識伝達を容易にすることを目的としている。
小さいが転送可能なグラフを生成する新しいUGDA法であるGraphAlignを提案する。
古典的な経験的リスク最小化(ERM)を備えた新しいグラフ上で、GNNのみをトレーニングすることにより、GraphAlignは、ターゲットグラフ上での例外的なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-07-27T17:56:31Z) - Gradformer: Graph Transformer with Exponential Decay [69.50738015412189]
グラフ変換器(GT)の自己保持機構は、グラフの帰納バイアス、特に構造に関するバイアスを見落としている。
本稿では,GTと本質的帰納バイアスを革新的に統合するGradformerを提案する。
GradformerはグラフニューラルネットワークやGTベースラインモデルよりも、さまざまなグラフ分類や回帰タスクにおいて一貫して優れています。
論文 参考訳(メタデータ) (2024-04-24T08:37:13Z) - Collaborate to Adapt: Source-Free Graph Domain Adaptation via
Bi-directional Adaptation [40.25858820407687]
教師なしグラフドメイン適応(Unsupervised Graph Domain Adaptation, UGDA)は、ラベル豊富なソースグラフから完全にラップされていないターゲットグラフへ知識を転送する実用的なソリューションとして登場した。
本稿では,モデル適応とグラフ適応を協調的に行う,GraphCTAという新しいパラダイムを提案する。
提案手法は,近年のソースフリーベースラインを大きなマージンで上回っている。
論文 参考訳(メタデータ) (2024-03-03T10:23:08Z) - PUMA: Efficient Continual Graph Learning for Node Classification with Graph Condensation [49.00940417190911]
既存のグラフ表現学習モデルは、新しいグラフを学習する際に破滅的な問題に遭遇する。
本稿では,PUMA(PUdo-label guided Memory bAnkrogation)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T05:09:58Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - Deep Manifold Learning with Graph Mining [80.84145791017968]
グラフマイニングのための非段階的決定層を持つ新しいグラフ深層モデルを提案する。
提案モデルでは,現行モデルと比較して最先端性能を実現している。
論文 参考訳(メタデータ) (2022-07-18T04:34:08Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
トレーニングセット内の既存グラフから直接正のグラフインスタンスを選択することを提案する。
私たちの選択は、特定のドメイン固有のペアワイズ類似度測定に基づいています。
さらに,ノードを動的にマスキングしてグラフ上に均等に分配する適応ノードレベルの事前学習手法を開発した。
論文 参考訳(メタデータ) (2022-06-23T20:12:51Z) - A Graph Data Augmentation Strategy with Entropy Preserving [11.886325179121226]
本稿では,グラフ間の特徴情報を評価するための定量的指標として,新しいグラフエントロピー定義を提案する。
グラフエントロピーの保存を考慮し、摂動機構を用いてトレーニングデータを生成する効果的な方法を提案する。
提案手法はトレーニング過程におけるGCNの堅牢性と一般化能力を大幅に向上させる。
論文 参考訳(メタデータ) (2021-07-13T12:58:32Z) - Evolving-Graph Gaussian Processes [20.065168755580558]
既存のアプローチでは静的構造に重点を置いているが、実際のグラフデータの多くは動的構造を表しており、GGPの応用は制限されている。
我々はこれを克服するために進化的グラフガウス過程(e-GGP)を提案する。
静的グラフガウスプロセスアプローチに対するe-GGPの利点を実証する。
論文 参考訳(メタデータ) (2021-06-29T07:16:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。