Active Quantum Reservoir Engineering: Using a Qubit to Manipulate its Environment
- URL: http://arxiv.org/abs/2505.16898v2
- Date: Thu, 12 Jun 2025 15:08:42 GMT
- Title: Active Quantum Reservoir Engineering: Using a Qubit to Manipulate its Environment
- Authors: Marcelo Janovitch, Matteo Brunelli, Patrick P. Potts,
- Abstract summary: We develop a theoretical framework for active reservoir engineering, where time-dependent control over a quantum system is used to manipulate its environment.<n>We illustrate our results with two examples: a superconducting qubit coupled to an environment of two-level systems and a semiconducting quantum dot coupled to nuclear spins.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum reservoir engineering leverages dissipative processes to achieve desired behavior, with applications ranging from entanglement generation to quantum error correction. Therein, a structured environment acts as an entropy sink for the system and no time-dependent control over the system is required. We develop a theoretical framework for active reservoir engineering, where time-dependent control over a quantum system is used to manipulate its environment. In this case, the system may act as an entropy sink for the environment. Our framwork captures the dynamical interplay between system and environment, and provides an intuitive picture of how finite-size effects and system-environment correlations allow for manipulating the environment by repeated initialization of the quantum system. We illustrate our results with two examples: a superconducting qubit coupled to an environment of two-level systems and a semiconducting quantum dot coupled to nuclear spins. In both scenarios, we find qualitative agreement with previous experimental results, illustrating how active control can unlock new functionalities in open quantum systems.
Related papers
- Bath Dynamical Decoupling with a Quantum Channel [44.99833362998488]
We find that bath dynamical decoupling works if and only if the kick is ergodic.<n>We study in which circumstances CPTP kicks on a mono-partite quantum system induce quantum Zeno dynamics with its Hamiltonian cancelled out.
arXiv Detail & Related papers (2024-09-27T07:47:52Z) - Quantum control by the environment: Turing uncomputability, Optimization over Stiefel manifolds, Reachable sets, and Incoherent GRAPE [56.47577824219207]
In many practical situations, the controlled quantum systems are open, interacting with the environment.
In this note, we briefly review some results on control of open quantum systems using environment as a resource.
arXiv Detail & Related papers (2024-03-20T10:09:13Z) - Experimental optical simulator of reconfigurable and complex quantum
environment [0.0]
We demonstrate an optical simulator of a quantum system coupled to an arbitrary and reconfigurable environment.
We experimentally retrieve typical features of open quantum system dynamics.
This opens the way to the experimental tests of open quantum systems in reconfigurable environments.
arXiv Detail & Related papers (2023-02-24T14:55:49Z) - From Goldilocks to Twin Peaks: multiple optimal regimes for quantum
transport in disordered networks [68.8204255655161]
Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport.
This paper shows that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.
arXiv Detail & Related papers (2022-10-21T10:57:16Z) - Quantum Simulation of Open Quantum Systems Using Density-Matrix
Purification [0.0]
We present a general framework for OQSs where the system's $d times d$ density matrix is recast as a $d2$ wavefunction.
We demonstrate this method on a two-level system in a zero temperature amplitude damping channel and a two-site quantum Ising model.
arXiv Detail & Related papers (2022-07-14T17:59:19Z) - From Non-Markovian Dissipation to Spatiotemporal Control of Quantum Nanodevices [0.0]
We study how energy dissipated into the environment can be remotely harvested to create transient excited/reactive states.
We also identify how reorganisation triggered by system excitation can qualitatively and reversibly alter the downstream' kinetics of a functional' quantum system.
arXiv Detail & Related papers (2022-05-20T10:46:04Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Numerically exact open quantum systems simulations for arbitrary
environments using automated compression of environments [0.0]
We present a numerically exact method for simulating open quantum systems with arbitrary environments.
Our approach automatically reduces the large number of environmental degrees of freedom to those which are most relevant.
We demonstrate the power of this method by applying it to problems with bosonic, fermionic, and spin environments.
arXiv Detail & Related papers (2021-01-05T17:07:05Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.