Topological Phases, Criticality, and Mixed State Order in a Hubbard Quantum Simulator
- URL: http://arxiv.org/abs/2505.17009v1
- Date: Thu, 22 May 2025 17:58:35 GMT
- Title: Topological Phases, Criticality, and Mixed State Order in a Hubbard Quantum Simulator
- Authors: Lin Su, Rahul Sahay, Michal Szurek, Alexander Douglas, Ognjen Markovic, Ceren B. Dag, Ruben Verresen, Markus Greiner,
- Abstract summary: We show that a Mott insulator and a pinned charge-density wave in one dimension are in distinct crystalline symmetry-protected topological phases (CSPTs)<n>We show that stacking two copies of these states eliminates the critical point -- a signature feature of topological phases that underlies their classification.<n>Our results establish a path toward probing broader symmetry-protected topology and mixed-state order in programmable quantum devices.
- Score: 36.556659404501914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phases of matter are conventionally distinguished from one another by local observables. Topological quantum phases lie outside this paradigm; their differences can only be learned by examining them globally. This has striking implications for the stability of these phases, their classification, and the phase transitions between them. In this work, we experimentally demonstrate these implications using interacting magnetic erbium atoms in an optical lattice. We show that a Mott insulator and a pinned charge-density wave in one dimension are in distinct crystalline symmetry-protected topological phases (CSPTs). The quantum phase transition separating them is revealed by measuring nonlocal string order parameters using site-resolved imaging. Remarkably, stacking two copies of these states eliminates the critical point -- a signature feature of topological phases that underlies their classification. Moreover, we show that while a programmable symmetry-breaking disorder pattern can also remove this critical point, averaging over disorder restores it, supporting recent theoretical predictions of mixed-state order. Finally, we highlight a connection between one of these CSPTs and the Haldane insulator, and detect signatures of the transition between the Haldane and the Mott insulator. Our results establish a path toward probing broader symmetry-protected topology and mixed-state order in programmable quantum devices.
Related papers
- Quantum phase transitions and information-theoretic measures of a spin-oscillator system with non-Hermitian coupling [6.412262542272846]
We analytically compute some information-theoretic measures for a spin-oscillator system with non-Hermitian coupling.<n>We expose the appearance of exceptional points (EP) on such two-dimensional subspaces together with quantum phase transitions marking the transit from real to complex eigenvalues.
arXiv Detail & Related papers (2025-06-29T18:24:20Z) - Bosonic vs. Fermionic Matter in Quantum Simulations of $2+1$D Gauge Theories [0.0]
We study the model coupled to hardcore bosons and identify a similar phase structure, though with a more intricate mixture of phases around the transition.<n>Our findings suggest that bosons can effectively replace fermions in lattice gauge theory simulations.
arXiv Detail & Related papers (2025-04-23T18:00:04Z) - Mixed-state phase transitions in spin-Holstein models [5.900087161838199]
This work aims to extend the notion of mixed-state phases to the realm of coupled electron/spinphonon systems.<n>We consider a two-dimensional cluster Hamiltonian locally coupled to a set of single bosonic modes with arbitrary coupling strength.<n>We argue that both measures detect signatures of mixed-state phase transitions, albeit at different critical spin-phonon coupling strengths.
arXiv Detail & Related papers (2024-12-03T18:10:10Z) - Phase transitions and remnants of fractionalization at finite temperature in the triangular lattice quantum loop model [0.3495246564946556]
We study the finite-temperature phase diagram of the quantum loop model on the triangular lattice.<n>We discuss the relevance of our results for current experiments on quantum simulation platforms.
arXiv Detail & Related papers (2024-12-02T13:55:29Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Foliated order parameter in a fracton phase transition [0.0]
We study phase transition in the X-cube model in the presence of a non-linear perturbation.
We show there is a first order quantum phase transition from a type I fracton phase to a magnetized phase.
We introduce a non-local order parameter in the form of a foliated operator which can characterize the above phase transition.
arXiv Detail & Related papers (2022-06-23T20:11:20Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Dissipative Floquet Dynamics: from Steady State to Measurement Induced
Criticality in Trapped-ion Chains [0.0]
Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions.
Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions are two primary examples.
We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems.
arXiv Detail & Related papers (2021-07-12T18:18:54Z) - Dynamical Topological Quantum Phase Transitions at Criticality [0.0]
We contribute to expanding the systematic understanding of the interrelation between the equilibrium quantum phase transition and the dynamical quantum phase transition (DQPT)
Specifically, we find that dynamical quantum phase transition relies on the existence of massless it propagating quasiparticles as signaled by their impact on the Loschmidt overlap.
The underlying two dimensional model reveals gapless modes, which do not couple to the dynamical quantum phase transitions, while relevant massless quasiparticles present periodic nonanalytic signatures on the Loschmidt amplitude.
arXiv Detail & Related papers (2021-04-09T13:38:39Z) - Realising the Symmetry-Protected Haldane Phase in Fermi-Hubbard Ladders [0.0]
Topology in quantum many-body systems has profoundly changed our understanding of quantum phases of matter.
Here, we realise such a topological Haldane phase with Fermi-Hubbard ladders in an ultracold-atom quantum simulator.
arXiv Detail & Related papers (2021-03-18T17:55:56Z) - Observation of Time-Reversal Invariant Helical Edge-Modes in Bilayer
Graphene/WSe$_2$ Heterostructure [0.4899818550820575]
Topological insulators, along with Chern insulators and Quantum Hall insulator phases, are considered as paradigms for symmetry protected topological phases of matter.
This article reports the experimental realization of the time-reversal invariant helical edge-modes in bilayer graphene/monolayer WSe$$-based heterostructures.
arXiv Detail & Related papers (2020-03-23T14:22:32Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.